Challenge Practice

- **1.** 10 units **2.** $3\sqrt{5}$ units
- **3.** no; no; Sample answer:

4. AC = AD = AE = EF. $\triangle ACD \cong \triangle EAF$ (SAS congruence postulate). Therefore, $\overline{CD} \cong \overline{EF}$.

5. 184 **6.** 30

Lesson 10.4

Teaching Guide

- **1.** Sample answer: If point D lies in the interior of $\angle ABC$, then the $m\angle ABD + m\angle DBC = m\angle ABC$; to find the measures of unknown angles; angles whose sides form two pairs of opposite rays; they are equal; two adjacent angles whose non-common sides are opposite rays; they are supplementary.
- **2.** a four-sided polygon; 360°
- **3.** when both pairs of opposite sides are parallel; they are congruent; 180°

Practice Level A

1. 79° **2.** 12° **3.** 90° **4.** 80° **5.** 152° **6.** 180°

7. 40° **8.** 16° **9.** 52° **10.** 34° **11.** 31°

12. 62° **13.** 130° **14.** 112° **15.** 180° **16.** 62°

17. 248° **18.** $\angle C \cong \angle D, \angle E \cong \angle F$

19. $\angle W \cong \angle Z$, $\angle X \cong \angle Y$ **20.** no; The 70° and 130° angles are not supplementary. **21.** yes

22. yes **23.** x = 118, y = 118 **24.** x = 112,

y = 76 **25.** x = 90, y = 82 **26.** x = 105, y = 75

27. x = 66, y = 66 **28.** x = 91.5, y = 106

29. $m \angle A = 40^{\circ}$, $m \angle C = 32^{\circ}$ **30.** $m \angle A = 73^{\circ}$, $m \angle C = 31^{\circ}$ **31.** $m \angle A = 45^{\circ}$, $m \angle C = 72^{\circ}$

32. $m \angle A = 90^{\circ}, m \angle B = 120^{\circ}, m \angle C = 90^{\circ}$

Practice Level B

1. B **2.** 58° **3.** 140° **4.** 46° **5.** 63° **6.** 28°

7. 123° **8.** 90° **9.** 42° **10.** 58° **11.** 48°

12. 58° **13.** 42° **14.** 96° **15.** 180°

16. x = 14, y = 38 **17.** x = 58, y = 29

18. x = 72, y = 90 **19.** x = 39, y = 29

20. x = 16, y = 14 **21.** x = 6, y = 36.5

22. D **23.** $\angle AED \cong \angle BEC$; Theorem 10.8; Angle-Angle Similarity Postulate **24.** $\angle ADB$ and $\angle ACB$ **25.** Given; $\overline{AB} \cong \overline{CD}$; $\angle AEB \cong \angle DEC$; Theorem 10.8; AAS Congruence Theorem

Practice Level C

1. 74° **2.** 66° **3.** 126° **4.** 62° **5.** 132° **6.** 42°

7. 32° **8.** 43° **9.** 120° **10.** 90° **11.** 42.5°

12. 48.5° **13.** 42.5° **14.** 47.5° **15.** 48.5°

16. 95° **17.** 180° **18.** yes **19.** no **20.** no

21. x = 7 **22.** x = 102 **23.** x = 23.25 **24.** x = 8

25. w = 65, x = 66, y = 115, z = 114

26. x = 91.5, y = 35, z = 88.5

27. Sample answer: Draw \overline{DG} . Because \overline{DF} is a diameter, $\angle DGF$ is a right angle inscribed in $\bigcirc C$. Then $\overline{DG} \perp \overline{FG}$ and $\angle DGF \cong \angle DGE$, because perpendicular lines intersect to form four right angles. It is given that $\overline{FG} \cong \overline{GE}$ and by the Reflexive Property, $\overline{DG} \cong \overline{DG}$. Then by SAS, $\triangle DGF \cong \triangle DGE$, and corresponding parts of \cong triangles are \cong , so $\overline{DF} \cong \overline{DE}$. Therefore, $\triangle DEF$ is isosceles by definition.

28. Sample answer: Draw \overline{PR} , \overline{PS} , and \overline{PT} . \overline{PR} is a diameter of $\bigcirc Q$, so $\angle PSR$ is a right angle inscribed in $\bigcirc Q$. Then $\overline{PS} \perp \overline{RT}$, and $\triangle PSR$ and $\triangle PST$ are right triangles. $\overline{PR} \cong \overline{PT}$ because they are radii of the same circle, and $\overline{PS} \cong \overline{PS}$ by the Reflexive Property. So, $\triangle PSR \cong \triangle PST$ by HL. Therefore, $\overline{RS} \cong \overline{RT}$ because they are corresponding parts of $\cong \triangle S$.

Study Guide

1. 70° **2.** 35° **3.** Make the diameter of your circle the diagonal of the house.

4. $m \angle R = 60^{\circ}$, $m \angle Q = 36^{\circ}$, $m \angle P = 120^{\circ}$, $m \angle S = 144^{\circ}$

Real-Life Application

1. ∠BDC **2.** 4400 mi **3.** 25° **4.** 50° **5.** 8

6. about 3666 mi