Name: \qquad No. \qquad Per: \qquad Date: \qquad

Proofs Practice - "Proofs Worksheet \#2"
$2 C$

1. Given: O is the midpoint of $\mathrm{MN} \quad$ Prove: $\mathrm{OW}=\mathrm{ON}$ $O M=O W$

	Statement	Reason
1.	O is the midpoint of seg MN	Given
2.	Segment NO = Segment OM	Def of midpoint
3.	NO = OM	Def of cong.
4.	OM = OW	Given
5.	NO = OW	Transitive Property (Substitution)
6.	OW - NO	Symmetric Property
7.	NO = ON	Reflexive Property
8.	OW = ON	Transitive Property (Substitution)

2. Given: $A B=C D$

Prove: $A C=B D$

	Statement	Reason
1.	$A B=C D$	Given
2.	$A B+B C=C D+B C$	Addition Property of Equality
3.	$A B+B C=A C$	Segment Addition Post
4.	$C D+B C=B D$	Segment Addition Post
5.	$A C=B D$	Substitution

3. Given: $\mathrm{m} \angle 1=90^{\circ}$

Prove: $m \angle 2=90^{\circ}$

	Statement	Reason
1.	$\mathrm{m} \angle 1=90^{\circ}$	Given
2.	$\angle 1$ and $\angle 2$ are a linear pair	Definition of Linear Pair
3.	$\angle 1$ and $\angle 2$ are supplementary	Linear Pair Theorem
4.	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	Definition of Supplementary
5.	$90^{\circ}+\mathrm{m} \angle 2=180^{\circ}$	Substitution
6.	$\mathrm{~m} \angle 2=90^{\circ}$	Subtraction Prop of Equality

4. Given: $\angle 1$ and $\angle 2$ are complementary Prove: $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
$\angle 3$ and $\angle 2$ are complementary

	Statement	Reason
1.	$\angle 1$ and $\angle 2$ are complementary $\angle 3$ and $\angle 2$ are complementary	Given
2.	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$ $\mathrm{m} \angle 3+\mathrm{m} \angle 2=90^{\circ}$	Definition of Complementary
3.	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3+\mathrm{m} \angle 2$	Substitution
4.	$\mathrm{m} \angle 1=\mathrm{m} \angle 3$	Subtraction Prop of Equality

5. Given: $\mathrm{m} \angle 1=\mathrm{m} \angle 3 \quad$ Prove: $\mathrm{m} \angle \mathrm{JOL}=\mathrm{m} \angle \mathrm{KOM}$

	Statement	Reason
1.	$\mathrm{~m} \angle 1=\mathrm{m} \angle 3$	Given
2.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3+\mathrm{m} \angle 2$	Addition Property of Equality
3.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=\angle \mathrm{JOL}$	Angle Addition Property
4.	$\mathrm{~m} \angle 2+\mathrm{m} \angle 3=\mathrm{m} \angle \mathrm{KOM}$	Angle Addition Property
5.	$\mathrm{~m} \angle \mathrm{JOL}=\mathrm{m} \angle \mathrm{KOM}$	Substitution
4.5	$\mathrm{~m} \angle 2+\mathrm{m} \angle 3=\mathrm{m} \angle 3+\mathrm{m} \angle 2$	Commutative Property

6. Given: $\mathrm{m} \angle 1=90^{\circ} \quad$ Prove: $\mathrm{m} \angle 2+90^{\circ}=180^{\circ}$

	Statement	Reason
1.	$\mathrm{m} \angle 1=90^{\circ}$	Given
2.	$\angle 1$ and $\angle 2$ are a linear pair	Definition of Linear Pair
3.	$\angle 1$ and $\angle 2$ are supplementary	Linear Pair Theorem
4.	$\mathrm{m} \angle 2+\mathrm{m} \angle 1=180^{\circ}$	Definition of Supplementary
5.	$\mathrm{m} \angle 2+90^{\circ}=180^{\circ}$	Substitution

7. Given: $\mathrm{PR} \cong \mathrm{LN}$

Prove: $P Q=L M$
Q is midpoint of $P R$
M is midpoint of LN

	Statement	Reason
1.	$\mathrm{PR} \cong \mathrm{LN}$	Given
2.	$\mathrm{PR}=\mathrm{LN}$	Definition of Congruence
3.	Q is midpoint of PR; M is midpoint of LN	Given
4.	$\mathrm{PQ} \cong \mathrm{QR} ; \mathrm{PQ}=\mathrm{QR}$	Definitions of Midpoint \& Congruence
5.	$\mathrm{LM} \cong \mathrm{MN;} \mathrm{LM} \mathrm{=} \mathrm{MN}$	Definitions of Midpoint \& Congruence
6.	$\mathrm{PR}=\mathrm{PQ}+\mathrm{QR} ; \mathrm{LN}=\mathrm{LM}+\mathrm{MN}$	Segment Addition Postulate
7.	$\mathrm{PQ}+\mathrm{QR}=\mathrm{LM}+\mathrm{MN}$	Substitution
8.	$\mathrm{PQ}+\mathrm{PQ}=\mathrm{LM}+\mathrm{LM}$	Substitution
9.	$2 \mathrm{PQ}=2 \mathrm{LM}$	Combining Like Terms
10.	$\mathrm{PQ}=\mathrm{LM}$	Division Property of Equality

8. Given: $\mathrm{EF} \perp \mathrm{EG}$

Prove: $\angle \mathrm{FED}$ and $\angle \mathrm{DEG}$ are complementary
D is in the interior of \angle FEG

	Statement	Reason
1.	EF \perp EG	Given
2.	$\mathrm{~m} \angle \mathrm{FEG}=90^{\circ}$	Definition of Perpendicular
3.	$\mathrm{~m} \angle \mathrm{FED}+\mathrm{m} \angle \mathrm{DEG}=\mathrm{m} \angle$ FEG	Angle Addition Postulate
4.	$\mathrm{~m} \angle \mathrm{FED}+\mathrm{m} \angle \mathrm{DEG}=90^{\circ}$	Substitution
5.	\angle FED and $\angle \mathrm{DEG}$ are complementary	Definition of Complementary

9. Given: $A B \cong C D$

Prove: $A C \cong B D$

	Statement	Reason
1.	$\mathrm{AB} \cong \mathrm{CD}$	Given
2.	$\mathrm{AB}=\mathrm{CD}$	Definition of Congruence
3.	$\mathrm{AB}+\mathrm{BC}=\mathrm{CD}+\mathrm{BC}$	Addition Postulate of Equality
$4 \cdot$	$\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$	Segment Addition Postulate
$5 \cdot$	$\mathrm{BC}+\mathrm{CD}=\mathrm{BD}$	Segment Addition Postulate
6.	$\mathrm{AC}=\mathrm{BD}$	Substitution
$7 \cdot$	$\mathrm{AB} \cong \mathrm{CD}$	Definition of Congruence

10. Given: $\angle 1$ and $\angle 2$ are supplementary

Prove: $\angle 1$ and $\angle 2$ are right angles
$\angle 1 \cong \angle 2$

	Statement	Reason
1.	$\angle 1$ and $\angle 2$ are supplementary	Given
2.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	Definition of Supplementary
3.	$\angle 1 \cong \angle 2$	Given
4.	$\mathrm{~m} \angle 1=\mathrm{m} \angle 2$	Definition of Congruent
5.	$\mathrm{m} \angle 1+\mathrm{m} \angle 1=180^{\circ}$ $\mathrm{m} \angle 2+\mathrm{m} \angle 2=180^{\circ}$	Substitution
6.	$2 \mathrm{~m} \angle 1=180^{\circ}$ $2 \mathrm{~m} \angle 2=180^{\circ}$	Combining Like Terms
7.	$\mathrm{m} \angle 1=90^{\circ}$ $\mathrm{m} \angle 2=90^{\circ}$	Division Property of Equality
8.	$\angle 1$ and $\angle 2$ are right angles	Definition of Right Angles

2
11. Given: $\angle 1 \cong \angle 2$

Prove: $\angle 1$ and $\angle 2$ are right angles

	Statement	Reason
1.	$\angle 1 \cong \angle 2$	Given
2.	$\mathrm{~m} \angle 1=\mathrm{m} \angle 2$	Definition of Congruent
3.	$\angle 1$ and $\angle 2$ are a linear pair	Definition of Linear Pair
4.	$\angle 1$ and $\angle 2$ are supplementary	Linear Pair Theorem
5.	$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	Definition of Supplementary
6.	$\mathrm{m} \angle 1+\mathrm{m} \angle 1=180^{\circ}$ $\mathrm{m} \angle 2+\mathrm{m} \angle 2=180^{\circ}$	Substitution
7.	$2 \mathrm{~m} \angle 1=180^{\circ}$ $2 \mathrm{~m} \angle 2=180^{\circ}$	Combining Like Terms
8.	$\mathrm{m} \angle 1=90^{\circ}$ $\mathrm{m} \angle 2=90^{\circ}$	Division Property of Equality
9.	$\angle 1 \mathrm{and} \angle 2$ are right angles	Definition of Right Angles

12. Given: $\angle 1$ and $\angle 2$ are complementary

Prove: $\angle 2$ and $\angle 3$ are complementary

	Statement	Reason
1.	$\angle 1$ and $\angle 2$ are complementary	Given
2.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	Definition of Complementary
3.	$\angle 1$ and $\angle 3$ are vertical angles	Definition of Vertical Angles
4.	$\angle 1$ and $\angle 3$ are congruent	Vertical Angles Theorem
5.	$\mathrm{~m} \angle 1=\mathrm{m} \angle 3$	Definition of Congruent
6.	$\mathrm{~m} \angle 3+\mathrm{m} \angle 2=90^{\circ}$	Substitution
7.	$\angle 2$ and $\angle 3$ are complementary	Definition of Complementary

13. Given: $m \angle 2=2 m \angle 1$

Prove: $m \angle 1=60^{\circ}$

	Statement	Reason
1.	$\mathrm{~m} \angle 2=2 \mathrm{~m} \angle 1$	Given
2.	$\angle 1$ and $\angle 2$ are a linear pair	Definition of Linear Pair
3.	$\angle 1$ and $\angle 2$ are supplementary	Linear Pair Theorem
4.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	Definition of Supplementary
5.	$\mathrm{~m} \angle 1+2 \mathrm{~m} \angle 1=180^{\circ}$	Substitution
6.	$3 \mathrm{~m} \angle 1=180^{\circ}$	Combining Like Terms
7.	$\mathrm{~m} \angle 1=60^{\circ}$	Division Property of Equality

14. Given: $A D$ bisects $\angle B A C$

Prove: $\angle 2 \cong \angle 3$

$$
\angle 1 \cong \angle 3
$$

	Statement	Reason
1.	AD bisects $\angle \mathrm{BAC}$	Given
2.	$\angle 1 \cong \angle 2$	Definition of Bisect
3.	$\angle 1 \cong \angle 3$	Given
4.	$\angle 2 \cong \angle 3$	Substitution

15. Given: $\angle \mathrm{ABC}$ a right angle Prove: $\angle 1$ and $\angle 2$ are complementary

	Statement	Reason
1.	$\angle A B C$ a right angle	Given
2.	$\mathrm{~m} \angle \mathrm{ABC}=90^{\circ}$	Definition of Right Angle
3.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle \mathrm{ABC}$	Angle Addition Postulate
4.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	Substitution
5.	$\angle 1$ and $\angle 2$ are complementary	Definition of Complementary

	Statement	Reason
1.	$C D \cong E F$	Given
2.	$C D \cong F G$	Given
3.	EF $\cong F G$	Substitution
4.	F is midpoint of E	Definition of Midpoint

17. Given: $K U \cong H F$

Prove: KH \cong UF

	Statement	Reason
1.	KU $\cong ~ H F ~$	Given
2.	$\mathrm{KU}=\mathrm{HD}$	Definition of congruent
$3 \cdot$	$\mathrm{KH}+\mathrm{HU}=\mathrm{KU}$	Segment addition postulate
4.	$\mathrm{HU}+\mathrm{UF}=\mathrm{HF}$	Segment addition postulate
5.	$\mathrm{KH}+\mathrm{HU}=\mathrm{HU}+\mathrm{UF}$	Substitution
6.	$\mathrm{KH}=\mathrm{UF}$	Subtraction Prop of Equality
7.	$\mathrm{KH} \cong \mathrm{UF}$	Definition of congruent

18. Given: $\angle \mathrm{ABD}$ and $\angle \mathrm{CDB}$ are right angles Prove: $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
$\mathrm{m} \angle 2=\mathrm{m} \angle 4$

	Statement	Reason
1.	$\angle \mathrm{ABD}$ and $\angle \mathrm{CDB}$ are right angles	Given
2.	$\mathrm{~m} \angle \mathrm{ABD}=90^{\circ} ; \mathrm{m} \angle \mathrm{CDB}=90^{\circ}$	Definition of right angles
3.	$\mathrm{m} \angle \mathrm{ABD}=\mathrm{m} \angle \mathrm{CDB}$	Substitution
4.	$\mathrm{m} \angle 2=\mathrm{m} \angle 4$	Given
5.	$\mathrm{~m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle \mathrm{ADB}$	
$\mathrm{m} \angle 3+\mathrm{m} \angle 4=\mathrm{m} \angle \mathrm{CDB}$		

19. Given: $m \angle A B C=m \angle C B D$

Prove: $B C$ is the bisector of $\angle A B D$

	Statement	Reason
1.	$\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{CBD}$	Given
2.	$\mathrm{~m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{CBD}=\mathrm{m} \angle \mathrm{ABD}$	Angle Addition Postulate
3.	$\mathrm{~m} \angle \mathrm{ABC} \cong \mathrm{m} \angle \mathrm{CBD}$	Definition of congruent
4.	BC is bisector of $\angle \mathrm{ABD}$	Definition of bisector

20. Given: $\mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{CBE} \quad$ Prove: $\angle \mathrm{ABD}$ and $\angle \mathrm{DBE}$ are complementary

Statement	Reason
1. $\mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{CBE}$	1. Given
2. $\angle \mathrm{ABE} \cong \angle \mathrm{CBE}$	2. Def of congruent
3. $\angle \mathrm{ABE}$ and $\angle \mathrm{CBE}$ are a linear pair	3. Def of Linear Pair
4. " "are supplementary	4. Linear Pair Theorem
5. $\mathrm{m} \angle \mathrm{ABE}+\mathrm{m} \angle \mathrm{CBE}=180^{\circ}$	5. Def of Supp
6. $\mathrm{m} \angle \mathrm{ABE}+\mathrm{m} \angle \mathrm{ABE}=180^{\circ}$	6. Substitution
7. $2(\mathrm{~m} \angle \mathrm{ABE})=180^{\circ}$	7. Simplify/Combine Like Terms
8. $\mathrm{m} \angle \mathrm{ABE}=90^{\circ}$	8. Division Prop of E
9. $\mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{DBE}=\mathrm{m} \angle \mathrm{ABE}$	9. Angle Addition Prop
10. $\mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{DBE}=90^{\circ}$	10. Substitution
11. $\angle \mathrm{ABD}$ and $\angle \mathrm{DBE}$ are complementary	11. Def of Comp

