Name:

Serafino · Geometry

No. _____ Per: _____

Date:

MTWRF

Ņ

Å

В

C

D

Μ

2C

Proofs Practice - "Proofs Worksheet #2"

1. Given:

O is the midpoint of MN

Prove: OW = ON

OM = OW

	Statement	Reason
1.	O is the midpoint of seg MN	Given
2.	Segment NO = Segment OM	Def of midpoint
3.	NO = OM	Def of cong.
4.	OM = OW	Given
5.	NO = OW	Transitive Property (Substitution)
6.	OW – NO	Symmetric Property
7.	NO = ON	Reflexive Property
8.	OW = ON	Transitive Property (Substitution)

Prove: AC = BD

	Statement	Reason
1.	AB = CD	Given
2.	AB + BC = CD + BC	Addition Property of Equality
3.	AB + BC = AC	Segment Addition Post
4.	CD + BC = BD	Segment Addition Post
5.	AC = BD	Substitution

3. Given: m∠1 = 90°

Prove: $m \angle 2 = 90^{\circ}$

	Statement	Reason
1.	m∠1 = 90°	Given
2.	$ m \angle$ 1 and $ m \angle$ 2 are a linear pair	Definition of Linear Pair
3.	igstarrow 1 and $igstarrow$ 2 are supplementary	Linear Pair Theorem
4.	m∠1 + m∠ 2 = 180 °	Definition of Supplementary
5.	90° + m∠2 = 180 °	Substitution
6.	m∠2 = 90°	Subtraction Prop of Equality

Е

4. Given: $\angle 1$ and $\angle 2$ are complementary $\angle 3$ and $\angle 2$ are complementary

Prove: $m \angle 1 = m \angle 3$

	Statement	Reason
1.	igstarrow 1 and $igstarrow$ 2 are complementary	Given
	igstarrow 3 and $igstarrow$ 2 are complementary	
2.	m∠1 + m∠ 2 = 90 °	Definition of Complementary
	m∠3 + m∠ 2 = 90 °	
3.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	Substitution
4.	m∠1 = m∠3	Subtraction Prop of Equality

5. Given: $m \angle 1 = m \angle 3$

Prove: $m \angle JOL = m \angle KOM$

	Statement	Reason
1.	m∠1=m∠3	Given
2.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	Addition Property of Equality
3.	m∠1 + m∠ 2 = ∠JOL	Angle Addition Property
4.	m∠2 + m∠3 = m∠ KOM	Angle Addition Property
5.	$m \angle JOL = m \angle KOM$	Substitution
4.5	$m \angle 2 + m \angle 3 = m \angle 3 + m \angle 2$	Commutative Property

6. Given: $m \angle 1 = 90^{\circ}$

Prove: $m \angle 2 + 90^{\circ} = 180^{\circ}$

	Statement	Reason
1.	m∠1 = 90°	Given
2.	$igstar{}$ 1 and $igstar{}$ 2 are a linear pair	Definition of Linear Pair
3.	igstarrow 1 and $igstarrow$ 2 are supplementary	Linear Pair Theorem
4.	m∠2+ m∠ 1 = 180 °	Definition of Supplementary
5.	m∠2 + 90° = 180 °	Substitution

7. Given: $PR \cong LN$

Q is midpoint of PR M is midpoint of LN Prove: PQ = LM

	Statement	Reason
1.	$PR \cong LN$	Given
2.	PR = LN	Definition of Congruence
3.	Q is midpoint of PR; M is midpoint of LN	Given
4.	$PQ \cong QR; PQ = QR$	Definitions of Midpoint & Congruence
5.	$LM \cong MN; LM = MN$	Definitions of Midpoint & Congruence
6.	PR = PQ + QR; LN = LM + MN	Segment Addition Postulate
7.	PQ + QR = LM + MN	Substitution
8.	PQ + PQ = LM + LM	Substitution
9.	2 PQ = 2 LM	Combining Like Terms
10.	PQ = LM	Division Property of Equality

8.	Given:	EF ⊥	EG	
----	--------	------	----	--

D is in the interior of \angle FEG

Prove: \angle FED and \angle DEG are complementary

	Statement	Reason
1.	$EF \perp EG$	Given
2.	m∠ FEG = 90°	Definition of Perpendicular
3.	m∠FED + m∠ DEG = m∠ FEG	Angle Addition Postulate
4.	m∠FED + m∠ DEG = 90°	Substitution
5.	\angle FED and \angle DEG are complementary	Definition of Complementary

9. Given: $AB \cong CD$

- Prove: AC \cong BD
- Statement Reason $AB \cong CD$ Given 1. 2. AB = CD Definition of Congruence 3. AB + BC = CD + BC Addition Postulate of Equality 4. AB + BC = AC Segment Addition Postulate 5. BC + CD = BD Segment Addition Postulate 6. AC = BD Substitution $\mathsf{AB}\cong\mathsf{CD}$ Definition of Congruence 7.
- 10. Given: $\angle 1$ and $\angle 2$ are supplementary $\angle 1 \cong \angle 2$ Prove: $\angle 1$ and $\angle 2$ are right angles

	Statement	Reason
1.	igstarrow 1 and $igstarrow$ 2 are supplementary	Given
2.	m∠1+m∠2 = 180 °	Definition of Supplementary
3.	$\angle 1 \cong \angle 2$	Given
4.	m∠1 = m ∠2	Definition of Congruent
5.	m∠1 + m∠1 = 180 °	Substitution
	m∠ 2 + m∠ 2 = 180 °	
6.	2 m∠ 1 = 180°	Combining Like Terms
	2 m∠ 2 = 180°	
7.	m∠ 1 = 90°	Division Property of Equality
	m∠ 2 = 90°	
8.	igstarrow 1 and $igstarrow$ 2 are right angles	Definition of Right Angles

11. Given: $\angle 1 \cong \angle 2$

Prove: $\angle 1$ and $\angle 2$ are right angles

	Statement	Reason
1.	$\angle 1 \cong \angle 2$	Given
2.	$m \angle 1 = m \angle 2$	Definition of Congruent
3.	$igstar{}$ 1 and $igstar{}$ 2 are a linear pair	Definition of Linear Pair
4.	igstarrow 1 and $igstarrow$ 2 are supplementary	Linear Pair Theorem
5.	m∠1 + m∠ 2 = 180 °	Definition of Supplementary
6.	m∠1 + m∠1 = 180 °	Substitution
	m∠ 2 + m∠ 2 = 180 °	
7.	2 m∠ 1 = 180°	Combining Like Terms
	2 m∠ 2 = 180°	
8.	m∠ 1 = 90°	Division Property of Equality
	m∠ 2 = 90°	
9.	igtriangle 1 and $igtriangle$ 2 are right angles	Definition of Right Angles

12. Given: $\angle 1$ and $\angle 2$ are complementary

Prove: \angle 2 and \angle 3 are complementary

	Statement	Reason
1.	$ m \angle 1$ and $ m \angle$ 2 are complementary	Given
2.	m∠ 1 + m∠ 2= 90°	Definition of Complementary
3.	\angle 1 and \angle 3 are vertical angles	Definition of Vertical Angles
4.	igstarrow 1 and $igstarrow$ 3 are congruent	Vertical Angles Theorem
5.	m∠1 = m∠ 3	Definition of Congruent
6.	m∠ 3 + m∠ 2= 90°	Substitution
7.	\angle 2 and \angle 3 are complementary	Definition of Complementary

13. Given: $m \angle 2 = 2 m \angle 1$

Prove: m∠1 = 60°

	Statement	Reason
1.	m∠2 = 2 m∠1	Given
2.	\angle 1 and \angle 2 are a linear pair	Definition of Linear Pair
3.	igstarrow 1 and $igstarrow$ 2 are supplementary	Linear Pair Theorem
4.	m∠1 + m∠ 2 = 180 °	Definition of Supplementary
5.	m∠ 1 + 2 m∠ 1 = 180 °	Substitution
6.	3 m∠ 1 = 180 °	Combining Like Terms
7.	m∠1=60°	Division Property of Equality

14. Given: AD bisects \angle BAC Prove: $\angle 2 \cong \angle 3$

 $\angle 1 \cong \angle 3$

	Statement	Reason
1.	AD bisects \angle BAC	Given
2.	$\angle 1 \cong \angle 2$	Definition of Bisect
3.	$\angle 1 \cong \angle 3$	Given
4.	$\angle 2 \cong \angle 3$	Substitution

15. Given: $\angle ABC$ a right angle Prove: $\angle 1$ and $\angle 2$ are complementary

	Statement	Reason
1.	\angle ABC a right angle	Given
2.	m∠ ABC = 90°	Definition of Right Angle
3.	$m \angle 1 + m \angle 2 = m \angle ABC$	Angle Addition Postulate
4.	m∠ 1 + m∠ 2 = 90 °	Substitution
5.	\angle 1 and \angle 2 are complementary	Definition of Complementary

16. Given: $CD \cong EF$

 $\mathsf{CD}\cong\mathsf{FG}$

Prove: F is midpoint of EG

	Statement	Reason
1.	$CD\congEF$	Given
2.	$CD\congFG$	Given
3.	$EF\congFG$	Substitution
4.	F is midpoint of E	Definition of <u>Midpoint</u>

17. Given: $KU \cong HF$

Prove: $KH \cong UF$

	Statement	Reason
1.	$KU\congHF$	Given
2.	KU = HD	Definition of congruent
3.	KH + HU = KU	Segment addition postulate
4.	HU + UF = HF	Segment addition postulate
5.	KH + HU = HU + UF	Substitution
6.	KH = UF	Subtraction Prop of Equality
7.	$KH\congUF$	Definition of congruent

18. Given: \angle ABD and \angle CDB are right angles $m\angle 2 = m\angle 4$ Prove: $m \angle 1 = m \angle 3$

	Statement	Reason
1.	\angle ABD and \angle CDB are right angles	Given
2.	$m \angle ABD = 90^\circ; m \angle CDB = 90^\circ$	Definition of right angles
3.	$m \angle ABD = m \angle CDB$	Substitution
4.	m∠2 = m∠ 4	Given
5.	m∠1 + m∠ 2 = m∠ ADB	Angle Addition Postulate
	m∠3 + m∠ 4 = m∠ CDB	Aligie Addition Postulate
6.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	Substitution
7.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	Substitution
8.	$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	Subtraction Property of Equality

19. Given: $m \angle ABC = m \angle CBD$

Prove: BC is the bisector of $\angle ABD$

	Statement	Reason
1.	$m \angle ABC = m \angle CBD$	Given
2.	$m \angle ABC + m \angle CBD = m \angle ABD$	Angle Addition Postulate
3.	$m \angle ABC \cong m \angle CBD$	Definition of congruent
4.	BC is bisector of ∠ ABD	Definition of bisector

GC

Ď

F

Ē

Κ

Н U F

20. Given: m∠ABE = m∠CBE

Prove: \angle ABD and \angle DBE are complementary

Statement	Reason
1. $m \angle ABE = m \angle CBE$	1. Given
2. $\angle ABE \cong \angle CBE$	2. Def of congruent
3. \angle ABE and \angle CBE are a linear pair	3. Def of Linear Pair
4. "" are supplementary	4. Linear Pair Theorem
5. m∠ABE + m∠CBE = 180°	5. Def of Supp
6. m∠ABE + m∠ABE = 180°	6. Substitution
7. 2(m∠ ABE) = 180°	7. Simplify/Combine Like Terms
8. m∠ABE = 90°	8. Division Prop of E
9. m∠ABD + m∠DBE = m∠ABE	9. Angle Addition Prop
10. m∠ABD + m∠DBE = 90°	10. Substitution
11. ∠ABD and ∠DBE are complementary	11. Def of Comp

