Name: \qquad Per: \qquad Date: \qquad
Serafino - Algebra 2E

2R Unit 2 Quest Review
 Linear \& Piecewise Functions Test

Do all work neatly for full credit.

1. Graph the piecewise function:

$$
f(x)=\left\{\begin{array}{r}
-2 x+2,0 \leq x<1 \\
3,1 \leq x<3 \\
5, x=3 \\
x-2, x>3
\end{array}\right.
$$

Show all work for full credit. Draw a box around final answers:
2) $4 x-3 y=-12$

b. $f(2)=$
b. $f(16)=$
b. $f(8)=$
c. Where is $f(x)=-4$
c. Where is $f(x)=10$
c. Where is $f(x)=10$

b. Domain?
c. Range?
8) $y=-3|x-1|$

b. $f(-5)=$
c. Axis of Symmetry?
6) $y=3-2 x$

b. Domain?
c. Range?
9) $y=|x|-4$

b. $f(-8)=$
c. Axis of Symmetry?
7) $\quad f(x)=2|x+3|-1$

b Domain?
c. Range?
10) $y=2|-2 x-5|-3$

b. $f(10)=$
c. Axis of Symmetry?
11. The equation of a linear function is $f(x)=-3 x+5$.
a. What is the y-intercept of $f(x-10)$?
b. What is the y-intercept of $2 f(x)+4$?
12. Refer to the piecewise function $f(x)$, to the right:
a. Domain:

Range:

b. Fill in the chart for the three pieces of $f(x)$

	Domain of Piece (As inequality)	Slope Intercept Form	Point-Slope Form	Standard Form
Piece 1				
Piece 2				
Piece 3				

Use the graph and equations to analyze the function:
c. $f(-2)$
d. $f(2.5)=$
e. $f(30)=$

HOW MANY TIMES!!!!
f. x-intercepts:
g. Where does $f(x)$ intersect $y=x$?
h. Where is $f(x)<-5$
18. A lifeguard took notice of the temperature and counted the number of people on his beach on 11 different days.
$(82,100),(84,225),(86,300)$,
$(86,350),(87,130),(88,450),(89,525)$,
$(92,450),(94,510),(94,600),(96,562)$

a. Use your calculator to calculate the Linear Regression model: (If your calculator malfunctions, use the line of best fit provided below)

Beach Visitors

Average Daily Temperature (${ }^{\circ} \mathrm{F}$)
b. What percent of the data $\left(r^{2}\right)$ is accurately captured by the linear regression model?
c. Interpolate using your model: How many beach visitors go to the beach on a 90° day?
d. How many beach visitors would there be on a 100° day?
e. What temperature would produce only 1 beach visitor?

