Homework # 1, 4, 5 The Fundamental Theorem of Algebra

Problem

What are all the complex roots of $x^4 + x^3 - 2x^2 + 4x - 24 = 0$?

Because this is a fourth-degree polynomial, you know it will have four roots.

- Step 1 Because the polynomial is already in standard form, you can use the Rational Root Theorem to determine possible rational roots. The possible rational roots are: ± 1 ; ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24 .
- Step 2 Evaluate the polynomial for each possible root until you find one that causes the polynomial to equal zero. This is a rational root. In this case, one rational root is 2.
- Step 3 Use synthetic division with a divisor of 2 to begin factoring the polynomial.

Repeat Steps 1-3 until you have a polynomial of degree 2 or less.

If the dividend is a second-degree polynomial, factor to find any additional roots. If the dividend does not factor easily, use the Quadratic Formula to find the additional roots.

$$\frac{-0 \pm \sqrt{0^2 - 4(1)(4)}}{2(1)} = \frac{\pm \sqrt{-16}}{2} = \frac{\pm 4i}{2} = \pm 2i$$

The four roots of $x^4 + x^3 - 4x^2 + 2x - 24 = 0$ are 2, -3, 2i, and -2i.

Find all the complex roots of each polynomial.

1. $x^4 - 8x^3 + xx^2$

1.
$$x^4 - 8x^3 + 11x^2 + 40x - 80$$

2.
$$4x^4 - x^3 - 12x^2 + 4x - 16$$

 $x = 2$

3.
$$x^6 + 2x^5 + 7x^4 + 20x^3 - 21x^2 + 18x - 27$$
 4. $x^3 - 4x^2 + 4x - 16$

4.
$$x^3 - 4x^2 + 4x - 16$$

Prentice Hall Algebra 2 . Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Reteaching (continued)

The Fundamental Theorem of Algebra

Problem

What are the zeros of $f(x) = x^3 + 4x^2 - x - 10$?

The possible rational roots are ± 1 , ± 2 , ± 5 , ± 10 .

So -2 is one of the roots.

$$x^3 + 4x^2 - x - 10 = (x + 2)(x^2 + 2x - 5)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-2 \pm \sqrt{4 - 4(1)(-5)}}{2(1)}$$

$$x = \frac{-2 \pm \sqrt{24}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{6}}{2}$$

Use the coefficients from synthetic division to obtain the quadratic factor.

Because $x^2 + 2x - 5$ cannot be factored, use the Quadratic Formula to solve $x^2 + 2x - 5 = 0$.

The polynomial function $f(x) = x^3 + 4x^2 - x - 10$ has one rational zero, -2, and two irrational zeros, $-1 + \sqrt{6}$ and $-1 - \sqrt{6}$.

Exercises

 $x = -1 \pm \sqrt{6}$

What are the zeros of each function?

5.
$$f(x) = x^3 - 2x^2 + 4x - 3$$

7.
$$f(x) = 3x^3 - 2x^2 - 15x + 10$$

 $x = 2/3$

9.
$$f(x) = x^4 - 3x^2 + 2$$

6.
$$f(x) = x^3 - 3x^2 - 15x + 125$$

8.
$$f(x) = x^4 - 4x^3 + 8x^2 - 16x + 16$$

10.
$$f(x) = x^3 - 2x^2 - 17x - 6$$

5-6 Reteaching ANSWER The Fundamental Theorem of Algebra

Problem

What are all the complex roots of $x^4 + x^3 - 2x^2 + 4x - 24 = 0$?

Because this is a fourth-degree polynomial, you know it will have four roots.

- Step 1 Because the polynomial is already in standard form, you can use the Rational Root Theorem to determine possible rational roots. The possible rational roots are: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$.
- **Step 2** Evaluate the polynomial for each possible root until you find one that causes the polynomial to equal zero. This is a rational root. In this case, one rational root is 2.
- **Step 3** Use synthetic division with a divisor of 2 to begin factoring the polynomial.

Step 4 Repeat Steps 1–3 until you have a polynomial of degree 2 or less.

Step 5 If the dividend is a second-degree polynomial, factor to find any additional roots. If the dividend does not factor easily, use the Quadratic Formula to find the additional roots.

$$\frac{-0 \pm \sqrt{0^2 - 4(1)(4)}}{2(1)} = \frac{\pm \sqrt{-16}}{2} = \frac{\pm 4i}{2} = \pm 2i$$

The four roots of $x^4 + x^3 - 4x^2 + 2x - 24 = 0$ are 2, -3, 2*i*, and -2*i*.

Exercises

Find all the complex roots of each polynomial.

1.
$$x^4 - 8x^3 + 11x^2 + 40x - 80$$

2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
2. $4x^4 - x^3 - 12x^2 + 4x - 16$
3. $x^6 + 2x^5 + 7x^4 + 20x^3 - 21x^2 + 18x - 27$
4. $x^3 - 4x^2 + 4x - 16$
4. $2i, -2i$

Prentice Hall Algebra 2 • Teaching Resources
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Reteaching (continued)

The Fundamental Theorem of Algebra

Problem

What are the zeros of $f(x) = x^3 + 4x^2 - x - 10$?

The possible rational roots are ± 1 , ± 2 , ± 5 , ± 10 .

Use synthetic division to test each possible rational root until you get a remainder of zero.

So -2 is one of the roots.

$$x^3 + 4x^2 - x - 10 = (x + 2)(x^2 + 2x - 5)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-2 \pm \sqrt{4 - 4(1)(-5)}}{2(1)}$$
$$x = \frac{-2 \pm \sqrt{24}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{6}}{2}$$

$$x = -1 \pm \sqrt{6}$$

Use the coefficients from synthetic division to obtain the quadratic factor.

Because $x^2 + 2x - 5$ cannot be factored, use the Quadratic Formula to solve $x^2 + 2x - 5 = 0$.

The polynomial function $f(x) = x^3 + 4x^2 - x - 10$ has one rational zero, -2, and two irrational zeros, $-1 + \sqrt{6}$ and $-1 - \sqrt{6}$.

Exercises

What are the zeros of each function?

5.
$$f(x) = x^3 - 2x^2 + 4x - 3$$

1, $\frac{1 \pm i\sqrt{11}}{2}$

7.
$$f(x) = 3x^3 - 2x^2 - 15x + 10$$

 $\frac{2}{3}$, $-\sqrt{5}$, $\sqrt{5}$

9.
$$f(x) = x^4 - 3x^2 + 2$$

6.
$$f(x) = x^3 - 3x^2 - 15x + 125$$

-5, 4 ± 3*i*

8.
$$f(x) = x^4 - 4x^3 + 8x^2 - 16x + 16$$

2, -2*i*, 2*i*

10.
$$f(x) = x^3 - 2x^2 - 17x - 6$$

$$-3, \frac{5 \pm \sqrt{33}}{2}$$