Name: \qquad Per: \qquad Date: \qquad
Serafino - Precalculus

6A Using Basic Identities to Solve Equations

We have done proofs using basic identities. We have already solved equations. Now we put them together.
ALL methods of solving equations still apply - factoring, square roots, etc...

1) Using Reciprocal/Ratio Identities:
 $2 \cos x-1=\sec x$

We cannot solve an equation with two variables at the same time (unless they are parts of individual factors given to us that we merely have to set equal to zero... but that's not the case here). So we look to get them into the same.
$2 \cos x-1=\frac{1}{\cos x} \quad$ We turn secant into $1 / \operatorname{cosine} .$. .
Well.. now we have to get that cosine out of the denominator if we want to solve.
$2 \cos ^{2} x-\cos x=1 \quad$ Multiply each term on both sides by a $\cos \mathrm{x}$.

$2 \mathrm{u}^{2}-u=1 \quad$ Let: $\mathrm{u}=\cos \mathrm{x}$
$2 u^{2}-u-1=0$
$(2 u+1)(u-1)=0 \quad u=-\frac{1}{2}$ or $u=1$
So $\ldots . \cos x=-1 / 2$ or 1
YOU MUST CHECK FOR EXTRANEOUS!! We did not work with the original equation. We changed a function that is undefined in some places to a function that is defined across the reals... AND we turns a linear variable into a quadratic one, potentially getting us more solutions than the original had. We have to check.
Potential Solutions $x \in[0,360): \quad x=0^{\circ}, 120^{\circ}$ or 240°.

$$
\begin{array}{llll}
\text { Check: } & 2 \cos (0)-1=\sec (0) ? & 2(1)-1=1 ? & 1=1 \checkmark \\
& 2 \cos (120)-1=\sec (120) ? & 2\left(-\frac{1}{2}\right)-1=-2 ? & -2=-2 \\
& 2 \cos (240)-1=\sec (240) ? & 2\left(-\frac{1}{2}\right)-1=-2 ? & -2=-2
\end{array}
$$

They all work! And we can confirm by graphing \rightarrow

Solutions: $\mathrm{x}=\mathbf{0}^{\circ}, \mathbf{1 2 0}{ }^{\circ} 240^{\circ}$

2) Using Pythagorean Identities

$$
4 \cos ^{2} x+4 \sin x-5=0
$$

Again, we can't solve for two variables.
$4\left(1-\sin ^{2} x\right)+4 \sin x-5=0$.
$4-4 \sin ^{2} x+4 \sin x-5=0$
$4 \sin ^{2} x-4 \sin x+1=0$
$4 u^{2}-4 u+1=0$
$(4 u-2)(4 u-2)=0$
$(2 u-1)(2 u-1)=0, \quad u=1 / 2$
Potential Solutions: $x=30^{\circ}, 150^{\circ}$
We didn't really change anything about the original equation so we don't really have to check for extraneous, but let's do it anyway.

Turn $\cos ^{2}$ into $1-\sin ^{2}$
Distribute and simplify the left side.
Let: $\mathrm{u}=\sin \mathrm{x}$

$$
\begin{array}{rllll}
\text { Check: } & 4 \cos ^{2}(30)+4 \sin (30)-5=0 ? & 4(3 / 4)+4(1 / 2)-5=0 ? & 3+2-5=0 & \checkmark \\
4 \cos ^{2}(150)+4 \sin (150)-5=0 ? & 4(3 / 4)+4(1 / 2)-5=0 ? & 3+2-5=0
\end{array}
$$

Solutions: $\mathrm{x}=30^{\circ}, 150^{\circ}$

| Isolate One Variable, then Square | Square with Both Variables |
| :--- | :--- | :--- |

Here are the graphs of each equation, so you can see what they look like and where the extraneous solutions come from:

6.2 Problem Set: Solve for $0^{\circ} \leq x<360^{\circ}$. State any extraneous solutions that arose from your method.

1. $\sqrt{3} \sec x=2$
2. $\sqrt{2} \csc x+5=3$
3. $4 \sin x-2 \csc x=0$
4. $\sec x-2 \tan x=0$
5. $2 \cos x+1=\sec x$
6. $2 \cos ^{2} x+\sin x-1=0$
7. $4 \sin ^{2} x+4 \cos x-5=0$
8. $2 \sin x+\cot x-\csc x=0$
9. $\sqrt{3} \sin x+\cos x=\sqrt{3}$
10. $\sqrt{3} \sin x-\cos x=1$
11. $6 \cos x+7 \tan x=\sec x$

* Challenges *

23. $\sin x+\cos x=\sqrt{2}$
24. $23 \csc ^{2} x-22 \cot x \csc x-15=0$
