Name: \qquad No. \qquad Per: \qquad Date: \qquad
$9 C-R$

Binomial Theorem / Expansion

Review

Show all set ups/work for maximum credit.

1. Recall Pascal's Triangle...
\qquad d. 11 C 4 is the \qquad row, \qquad term.
b. What is the $6^{\text {th }}$ row? \qquad e. The \qquad row has 18 terms.
c. What is the $3^{\text {rd }}$ term in the $7^{\text {th }}$ row? \qquad f. In the $25^{\text {th }}$ row, the $17^{\text {th }}$ term $=$ the \qquad term.
2. Consider the expanded polynomial of $(a+b)^{5} \ldots$
a. Number of terms: \qquad First term: \qquad Last term? \qquad
b. The set-up for the $5^{\text {th }}$ term is: \qquad C (a)-(b)-
3. In the expansion of $\left(2 s-t^{2}\right)^{15} \ldots$
a. The \qquad th term contains $\mathrm{s}^{9} \mathrm{t}$
b. $12^{\text {th }}$ term: \qquad d. $13^{\text {th }}$ term: \qquad
4. Find the $3^{\text {rd }}$ term for the following polynomials:
a. $\left(\frac{3}{4} p+2 \sqrt{q}\right)^{4}$
b. $\left(x^{3}-x^{2}\right)^{9}$ \qquad
5. Fully expand the following:
a. $(x-3)^{3}=$
b. $\left(2 x^{2}+y\right)^{2}=$

Not a bonus: What is the constant term when $\left(x^{2}-\frac{2}{x}\right)^{3}$ is expanded.

