					га	ge	1 (
Name:	No.	Per:	Date:				
Serafino · Precalculus S2				M 7	- W	R	F

Show all set ups/work for maximum credit.

- Recall Pascal's Triangle...
 - a. What is the 1st row? _____ term.
 - b. What is the 6th row? _____ e. The ____ row has 18 terms.
 - c. What is the 3^{rd} term in the 7^{th} row? _____ f. In the 25^{th} row, the 17^{th} term = the _____ term.
- Consider the expanded polynomial of $(a + b)^5$...
 - a. Number of terms: _____ First term: _____ Last term? _____

- b. The set-up for the 5th term is: _____C ____(a) ___(b) ___
- 3. In the expansion of $(2s-t^2)^{15}$...
 - a. The $___^{th}$ term contains $s^9 t _$
 - b. 12th term: _____ d. 13th term: _____
- 4. Find the 3rd term for the following polynomials:

a.
$$\left(\frac{3}{4}p + 2\sqrt{q}\right)^4$$
 _____ b. $\left(x^3 - x^2\right)^9$ _____

o.
$$(x^3 - x^2)^9$$

5. Fully expand the following:

a.
$$(x-3)^3 =$$

b.
$$(2x^2 + y)^2 =$$

Not a bonus: What is the constant term when $\left(x^2 - \frac{2}{x}\right)^3$ is expanded.