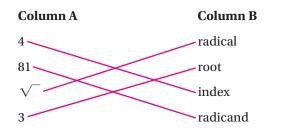



**3.** List the correct numbers or letters described by the vocabulary words for the expression  $-4x^{54} + 2r^2 - 5s^5 + 7w^3$  in the correct space.

| Exponents: | 54, 2, 5, 3 | Coefficients: | -4, 2, -5, 7 | Bases: | x, r, s, w |
|------------|-------------|---------------|--------------|--------|------------|
|            |             |               |              |        |            |

### Vocabulary Builder

#### root (noun) root


**Related Words:** square **root**, cube **root**, *n*th **root**, power, radical, index, radicand

**Definition:** The *n*th **root** of a given number is a specific number that when it is used as a factor *n* times, equals the given number.

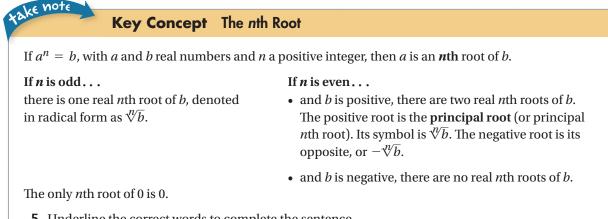
Using Symbols:  $2 \times 2 \times 2 = 8$ , so  $\sqrt[3]{8} = 2$ .

### • Use Your Vocabulary

**4.** Draw a line from the number or symbol in Column A to each term in Column B that best describes a part of  $\sqrt[4]{81} = 3$ .






Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

radical

Na

radicand

index



**5.** Underline the correct words to complete the sentence.

Since the index of  $\sqrt[4]{81}$  is even / odd and the radicand is negative / positive, there

are two real fourth roots / no real fourth roots of 81.

# Problem 1 Finding All Real Roots

**Got It?** What are the real fifth roots of 0, -1, and 32?

6. Cross out the question that will NOT help you find the roots.

| What number is the index? | Is the radicand negativ | ve or positive?                     |
|---------------------------|-------------------------|-------------------------------------|
| What number times 5 e     | quals -1?               | How many real roots of 0 are there? |

**7.** Complete the equation to find the fifth root of 0.

 $\mathbf{0} \times \mathbf{0} \times \mathbf{0} = \mathbf{0}$ 

**8.** The fifth root of 0 is **0**.

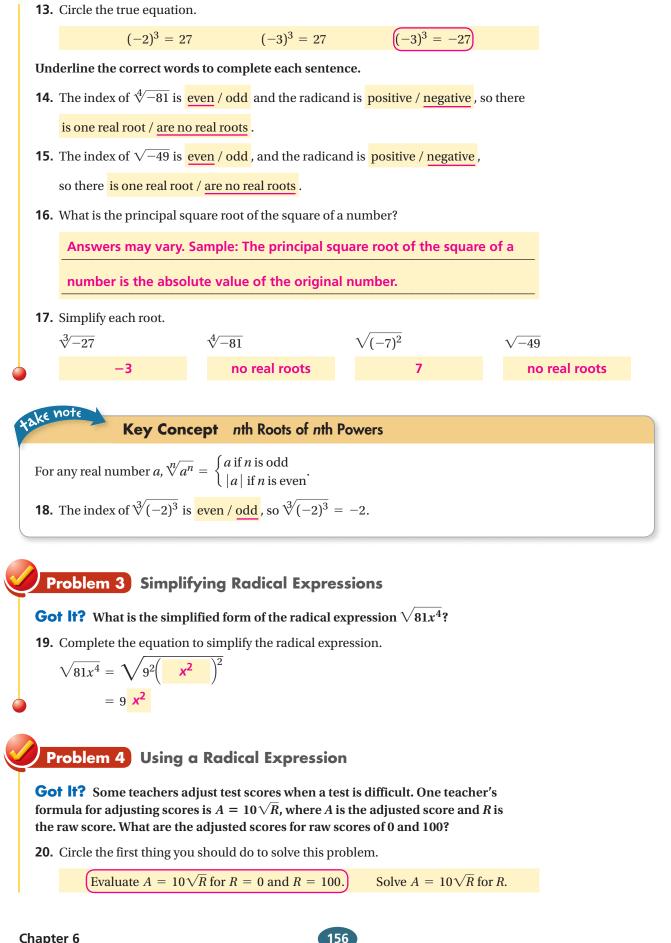
**9.** Complete the equation to find the fifth root of -1.

 $-1 \times -1 \times -1 \times -1 \times -1 = -1$ 

- **10.** The fifth root of -1 is -1.
- **11.** Complete the equation to find the fifth root of 32.

 $2 \times 2 \times 2 \times 2 \times 2 \times 2 = 32$ 

**12.** The fifth root of 32 is **2**.


 $\sqrt[3]{-27}$ 



 $\sqrt[4]{-81}$ 

 $\sqrt{(-7)^2}$ 

 $\sqrt{-49}$ 



Underline the correct number to complete each sentence.

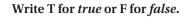
**21.** The lowest possible *raw score* is 0/10/15/100.

The lowest possible *adjusted score* is 0/10/15/100.

**22.** The highest possible *raw score* is 0/10/15/100.

The highest possible *adjusted score* is 0/10/15/100.

**23.** So, the curved scores for raw scores of 0 and 100 are **0** and **100**.


| Lesson Check • Do you UNDERSTAND?                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------|
| <b>Error Analysis</b> A student said <i>the only fourth root of 16 is 2</i> . Describe and correct his error.                  |
| <b>24.</b> If <i>a</i> is a fourth root of 16, which statement is true?                                                        |
|                                                                                                                                |
| <b>25.</b> Look at the statement you circled in Exercise 24. Circle the values of <i>a</i> below that make the statement true. |
| -64  -4  -2  2  4  64                                                                                                          |
| <b>26.</b> There are $1/2/3/4$ values of <i>a</i> that satisfy the statement you circled in Exercise 24.                       |
| Therefore, the number of fourth roots of 16 is $1/2/3/4$ .                                                                     |
| <b>27.</b> Describe the error the student made.                                                                                |
| Answers may vary. Sample: The student may have forgotten that when                                                             |
| <i>n</i> is even and <i>b</i> is positive, there are two <i>n</i> th roots of <i>b</i> , one positive,                         |
| ··································                                                                                             |
| and one negative.                                                                                                              |
| <b>28.</b> Complete the sentence to correct the error the student made.                                                        |
| The fourth root of 16 is $2$ or $-2$ .                                                                                         |
|                                                                                                                                |
| Math Success                                                                                                                   |
| Main Soccess                                                                                                                   |
| Check off the vocabulary words that you understand.                                                                            |
| <i>n</i> th root principal root radicand index                                                                                 |
| Rate how well you can <i>find nth roots</i> .                                                                                  |
| Need to review         0         2         4         6         8         10         Now I get it!                              |



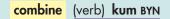
# Multiplying and Dividing Radical Expressions

# Vocabulary

### Review



- **1.** All mathematical expressions can be written as an equivalent expression with a *denominator* of 1.
- F 2.


т

**5**. $\frac{5}{6}$ 

- **2.** An expression can have a *denominator* equal to zero.
- 3. The expression above the fraction bar is the *numerator*.
- **4.** Multiplying both the *numerator* and the *denominator* by the same nonzero number results in an equivalent fraction.
- Circle the numerator and underline the denominator in each expression.



# Vocabulary Builder



Main Idea: Combine means to put things together or to get a total.

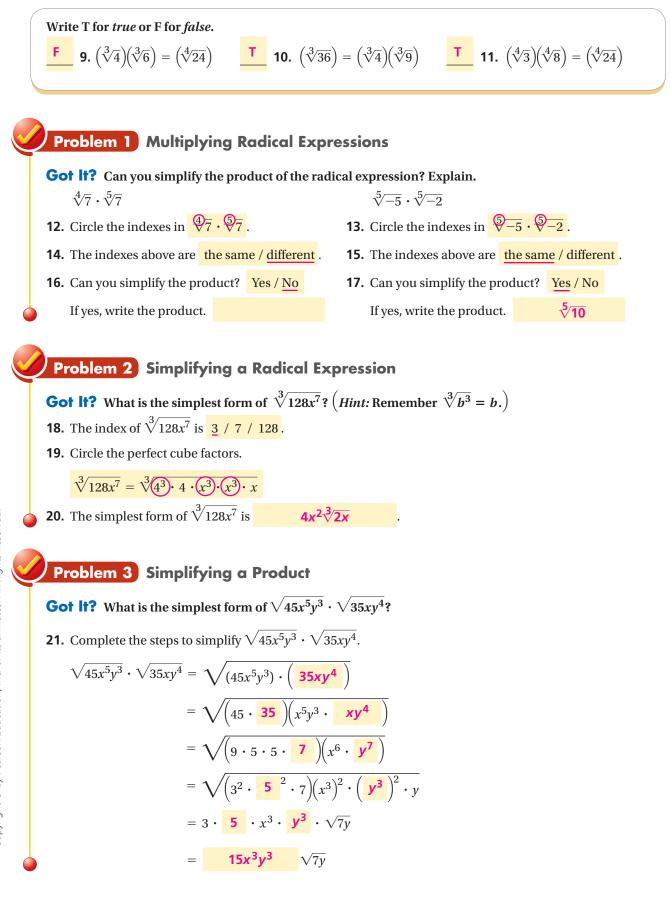
Math Usage: To combine means to put together or add two like terms to get one term.

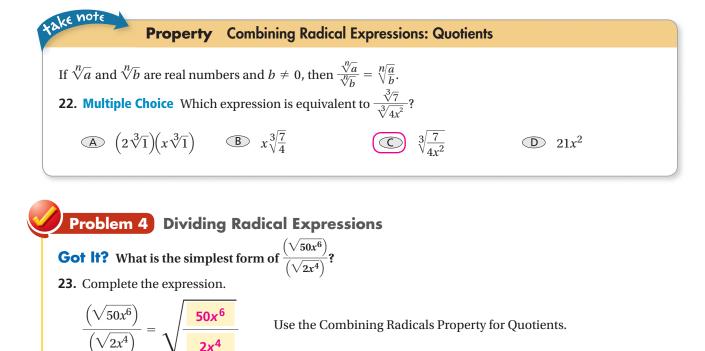
**Example:** The like terms  $-2x^3$  and  $7x^3$  can be **combined** to get  $5x^3$ .

### • Use Your Vocabulary

**8.** Circle the expression that shows the like terms in  $3x^2 + 1 + 4x^2 - 5$  *combined*.

$$4x^2 - 1x^2$$
 (7x<sup>2</sup> - 4)


 $3x^2 - 4x^2 + 1 - 5$ 




**Property** Combining Radical Expressions: Products

If  $\sqrt[n]{a}$  and  $\sqrt[n]{b}$  are real numbers, then  $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ .





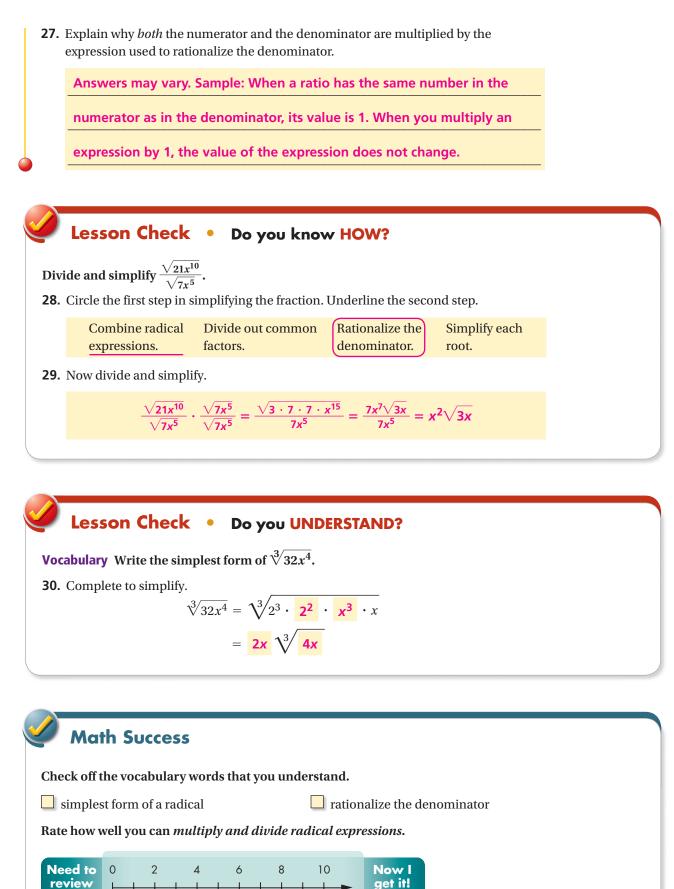


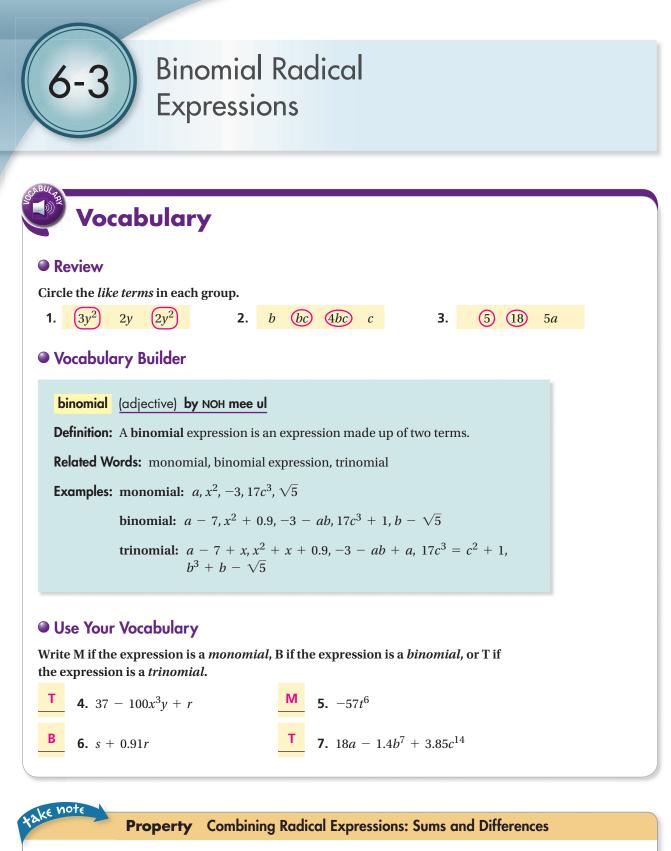
 $=\sqrt{25x^2}$ 

Simplify the square root.

Simplify under the radical sign.

### Problem 5 Rationalizing the Denominator


**Got lt?** What is the simplest form of  $\frac{\sqrt[3]{7x}}{\sqrt[3]{5v^2}}$ ?

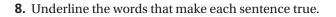

- **24.** The radicand in the *denominator* needs a  $5^2$  and a y to make  $5y^2$  a perfect cube.
- **25.** You will need to multiply *both* the numerator and the denominator by the

expression  $\sqrt[3]{5^2}v$  to rationalize the denominator.

**26.** Complete to show the rationalization of the denominator.

$$\frac{\sqrt[3]{7x}}{\sqrt[3]{5y^2}} = \frac{\sqrt[3]{7x}}{\sqrt[3]{5y^2}} \cdot \frac{\sqrt[3]{5^2y}}{\sqrt[3]{5^2y}}$$
Rationalize the denominator.  
$$= \frac{\sqrt[3]{175 xy}}{\sqrt[3]{5^3} \cdot \frac{y^3}{y^3}}$$
Multiply.  
$$= \frac{\sqrt[3]{175 xy}}{5 \cdot \frac{y}{5}}$$
Find the cube root of the denominator.  
$$= \frac{\sqrt[3]{175 xy}}{5y}$$
Simplify.






Use the Distributive Property to add or subtract like radicals.

$$a\sqrt[n]{x} + b\sqrt[n]{x} = (a+b)\sqrt[n]{x}$$
  $a\sqrt[n]{x} - b\sqrt[n]{x} = (a-b)\sqrt[n]{x}$ 

162

Copyright  $\oslash$  by Pearson Education, Inc. or its affiliates. All Rights Reserved.



To be like radicals, their indexes must be the same / different, and their radicands must be the same / different.

To add or subtract two like radicals, you add or subtract their radicands / coefficients.

# Problem 1 Adding and Subtracting Radical Expressions

### **Got It?** What is the simplified form of each expression?

 $7\sqrt[3]{5} - 4\sqrt{5}$ 

**9.** Are the radicals in  $7\sqrt[3]{5} - 4\sqrt{5}$ like radicals?

Yes /No

**11.** Is  $7\sqrt[3]{5} - 4\sqrt{5}$  simplified?

Yes/ No

**13.** Write the simplified form of each expression.

$$7\sqrt[3]{5} - 4\sqrt{5}$$

$$7\sqrt[3]{5} - 4\sqrt{5}$$

# **Problem 2** Using Radical Expressions

Got It? In the stained-glass window design, the side of each small square is 6 in. Find the perimeter of the window to the nearest tenth of an inch.

- **14.** The length of the window is made up of the diagonals / sides of three squares.
- **15.** The width of the window is made up of the diagonals / sides of two squares.
- **16.** Multiple Choice Which is the length of the diagonal of a square with side *s*?
  - $\bigcirc$   $\sqrt{2s}$  $\bigcirc$  2s
- $\bigcirc$   $s\sqrt{3}$



- **17.** Write the length of the diagonal of a square with side 6 in.
- **18.** Complete the following to find the length and the

 $6\sqrt{2}$ 

Length of the window:  

$$\ell = 3\left(\frac{6\sqrt{2}}{18}\right) = \frac{18\sqrt{2}}{18\sqrt{2}}$$

$$= 3\left(\begin{array}{c} 6\sqrt{2} \end{array}\right) = 18\sqrt{2}$$

$$w = 2\left(\begin{array}{c} 6\sqrt{2} \end{array}\right) = \begin{array}{c} 12\sqrt{2} \end{array}$$

 $3x\sqrt{xy} + 4x\sqrt{xy}$  $7x\sqrt{xv}$ 

**12.** Is  $3x\sqrt{xy} + 4x\sqrt{xy}$  simplified?

**10.** Are the radicals in  $3x\sqrt{xy} + 4x\sqrt{xy}$ 

 $3x\sqrt{xy} + 4x\sqrt{xy}$ 

like radicals?

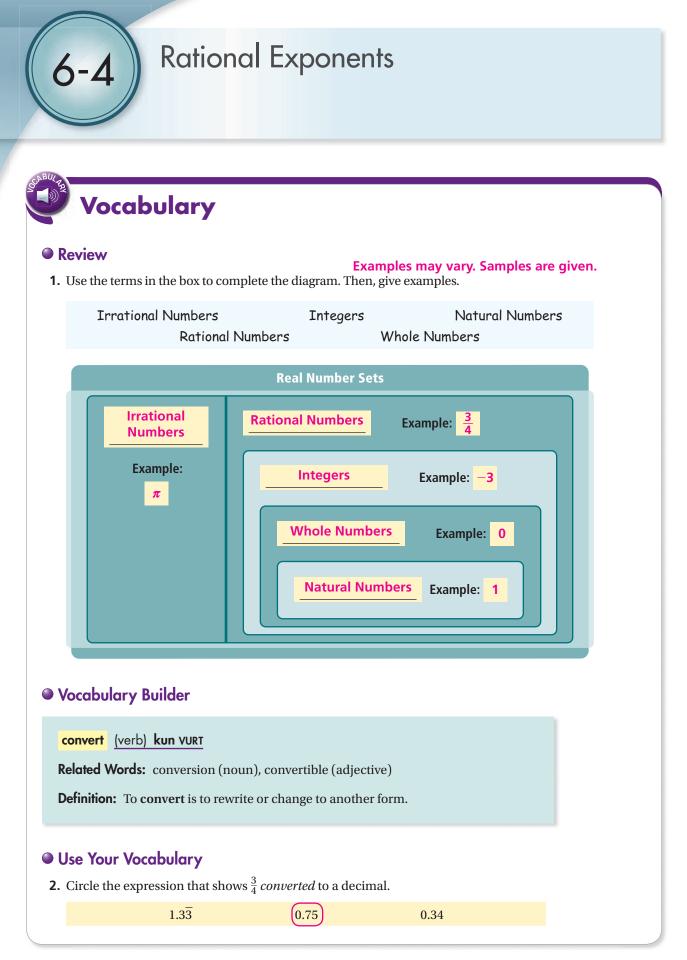
Yes/No

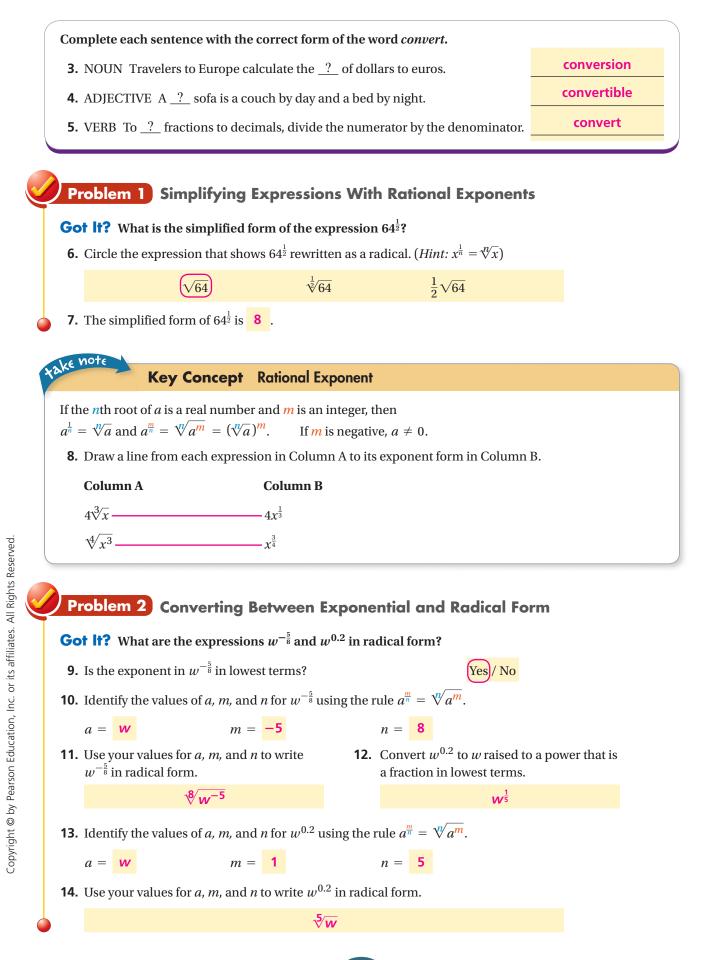
Yes /No



19. Complete the steps to find the perimeter of the window.  
Perimeter = 
$$2\ell + 2w$$
  
=  $2(18\sqrt{2}) + 2(12\sqrt{2})$  Substitute for length and width.  
=  $36\sqrt{2} + 24\sqrt{2}$  Simplify.  
=  $60\sqrt{2}$  Add the coefficients of the like radicals.  
=  $84.9$  Use a calculator to approximate to the nearest tenth  
Problem 3 Simplifying Before Adding or Subtracting  
Got If? What is the simplified form of the expression  $\sqrt[3]{250} + \sqrt[3]{54} - \sqrt[3]{16}$ ?  
20. Complete each factor tree to factor each radicand.  

$$\frac{250}{550} + \frac{2}{5} + \frac{2}{2} + \frac{2}{2} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{2} + \frac{2}{2}$$


**24.** The product  $(3 + 2\sqrt{5})(2 + 4\sqrt{5}) = 46 + 16\sqrt{5}$ .


 $3\cdot 2 + 3\cdot 4\sqrt{5} + 2\sqrt{5}\cdot 2 + 2\sqrt{5}\cdot 4\sqrt{5}$ 

 $3 \cdot 2 + 3 \cdot 4\sqrt{5} + 2\sqrt{5} \cdot 4\sqrt{5}$ 

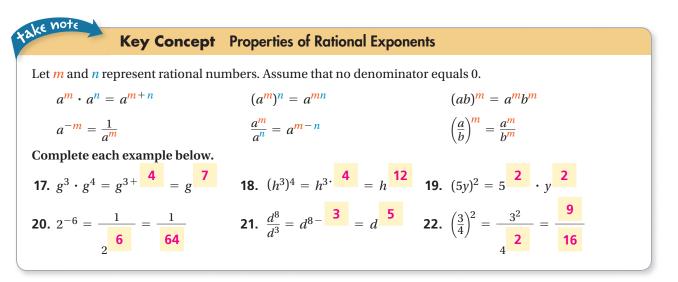
# Problem 5 Multiplying Conjugates **Got It?** What is the product of the expression $(6 - \sqrt{12})(6 + \sqrt{12})$ ? **25.** Use the FOIL method to find the product. $(6 - \sqrt{12})(6 + \sqrt{12}) = 6 \cdot 6 + 6 \cdot \sqrt{12} - \sqrt{12} \cdot 6 + (-\sqrt{12}) \cdot \sqrt{12}$ = 36 - 12 = 24 **Problem 6** Rationalizing the Denominator **Got If?** How can you write the expression $\frac{2\sqrt{7}}{\sqrt{3}-\sqrt{5}}$ with a rationalized denominator? **26.** Circle the conjugate of the denominator. $\sqrt{5} - \sqrt{3} / \sqrt{\sqrt{3} + \sqrt{5}}$ **27.** Use the conjugate of the denominator to write $\frac{2\sqrt{7}}{\sqrt{3} - \sqrt{5}}$ with a rational denominator. $\frac{2\sqrt{7}}{\sqrt{3}-\sqrt{5}} = \frac{2\sqrt{7}}{\sqrt{3}-\sqrt{5}} \cdot \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}} = \frac{2\sqrt{7}(\sqrt{3}+\sqrt{5})}{(\sqrt{3})^2 - (\sqrt{5})^2} = \frac{2\sqrt{21}+2\sqrt{35}}{3-5} = \frac{2\sqrt{21}+2\sqrt{35}}{-2} = -\sqrt{21} - \sqrt{35}$ Lesson Check • Do you UNDERSTAND? Vocabulary Determine whether each of the following is a pair of like radicals. If so, combine them. $3x\sqrt{11}$ and $3x\sqrt{10}$ $2\sqrt{3xy}$ and $7\sqrt{3xy}$ $12\sqrt{13y}$ and $12\sqrt{6y}$ **28.** Cross out the pairs that do NOT have the same index and the same radicand. $12\sqrt{13y}$ and $12\sqrt{6y}$ $3x\sqrt{11}$ and $3x\sqrt{10}$ $2\sqrt{3xy}$ and $7\sqrt{3xy}$ **29.** The sum of the like radicals is $9\sqrt{3xy}$

| like radicals    binomial radical expressions   ate how well you can add and subtract radical expressions. |
|------------------------------------------------------------------------------------------------------------|
| ate how well you can add and subtract radical expressions.                                                 |
|                                                                                                            |
|                                                                                                            |






### Problem 3 Using Rational Exponents


**Got It?** Kepler's third law of orbital motion states that you can approximate the period *P* (in Earth years) it takes a planet to complete one orbit of the sun using the function  $P = d^{\frac{3}{2}}$ , where *d* is the distance (in astronomical units, AU) from the planet to the sun. Find the approximate length (in Earth years) of a Venusian year if Venus is 0.72 AU from the sun.

**15.** Complete the problem-solving model below.



**16.** Use the formula to find the length of a Venusian year.

 $P = d^{\frac{3}{2}}$   $P = (0.72)^{\frac{3}{2}}$  $P \approx 0.610940259$ 

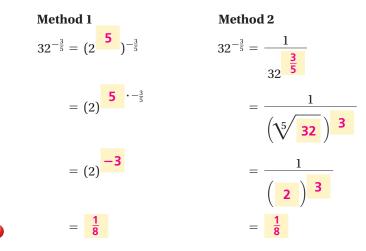


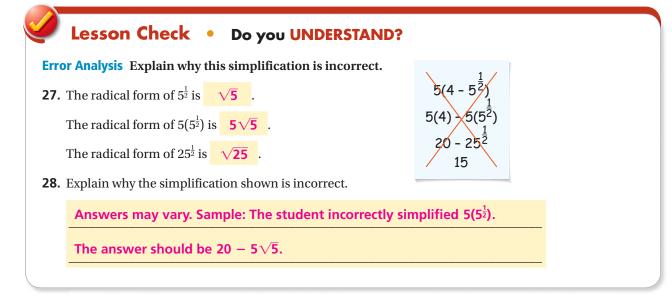
### Problem 4 Combining Radicals With Like Radicands

**Got It?** What is  $\sqrt{3}(\sqrt[4]{3})$  in simplest form?

**23.** Convert  $\sqrt{3}(\sqrt[4]{3})$  to exponential form.

 $\sqrt{3}(\sqrt[4]{3}) = 3^{\frac{1}{2}} \cdot 3^{\frac{1}{4}}$ 

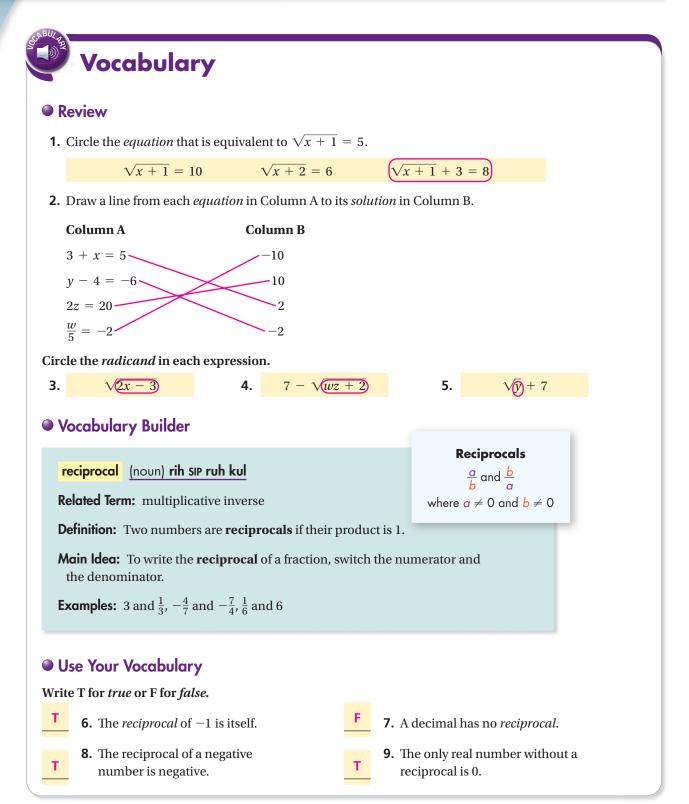

**24.** The bases of the factors are the same / different, so the Property you should use to simplify the exponential form is  $(ab)^m = a^m b^m / a^m \cdot a^n = a^{m+n}$ .


**25.** In simplest form,  $\sqrt{3}(\sqrt[4]{3}) = 3^{\frac{3}{4}}$ .

# Problem 5 Simplifying Numbers With Rational Exponents

**Got lt?** What is  $32^{-\frac{3}{5}}$  in simplest form?

**26.** Solve using two different methods. Complete each method.






| <b>-</b>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| rational exponent | exponential form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | radical form    |  |
| _                 | simplify expressions with rations with rational structure in the second structure in the second structure in the second structure is the second struct | onal exponents. |  |
|                   | ····· F · 55 ···· F · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |  |



# Solving Square Root and Other Radical Equations

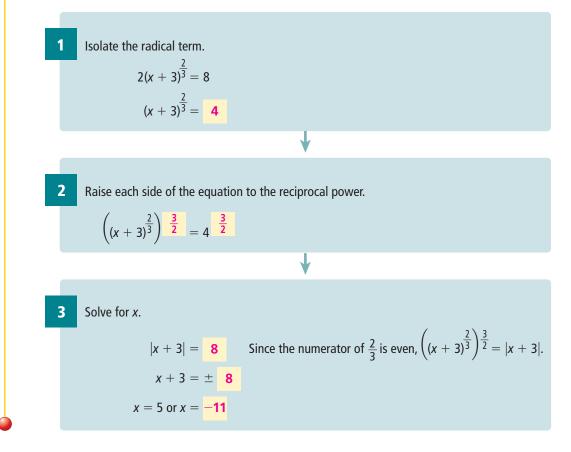


Solving a square root equation may require that you square each side of the equation. This can introduce extraneous solutions.

## Problem 1 Solving a Square Root Equation

#### **Got It?** What is the solution of $\sqrt{4x + 1} - 5 = 0$ ?

**10.** Circle the first step in solving the equation.


11.

| 1                     | 0 1                       |                                                         |
|-----------------------|---------------------------|---------------------------------------------------------|
| Isola                 | ate the square root.      | Square each side.                                       |
| . Underline the corre | ect word to complete each | h justification.                                        |
| $\sqrt{4x+1} = 5$     | Isolate the square roo    | ot / variable .                                         |
| 4x + 1 = 25           | Take the square root      | <mark>/ square</mark> of each side to remove the radica |
| 4x = 24               | Subtract 1 to isolate th  | he <mark>radical / <u>variable</u> term.</mark>         |
| x = 6                 | Divide / Multiply by      | 4 to solve for <i>x</i> .                               |

## **Problem 2** Solving Other Radical Equations

**Got It?** What are the solutions of  $2(x + 3)^{\frac{2}{3}} = 8$ ?

**12.** Complete each step to find the solution.



### Problem 4 Checking for Extraneous Solutions

#### **Got lt?** What is the solution of $\sqrt{5x - 1} + 3 = x$ ? Check your results.

**13.** Use the justifications at the right to complete each step.

$$\sqrt{5x - 1} + 3 = x$$

$$\sqrt{5x - 1} = x - 3$$

$$(\sqrt{5x - 1})^2 = (x - 3)^2$$

$$5x - 1 = x^2 + -6x + 9$$

$$0 = x^2 - 11x + 10$$

$$0 = (x - 1)(x - 10)$$

$$x = 1 \text{ or } x = 10$$
Write the original equation.  
Solution the radical.  
Square each side of the equation.  
Simplify.  
Combine like terms.  
Use the Zero-Product Property.

**14.** Substitute each value into the original equation to check the solutions.

| $\sqrt{5x-1} + 3 = x$                   | $\sqrt{5x-1} + 3 = x$                                                             |
|-----------------------------------------|-----------------------------------------------------------------------------------|
| $\sqrt{5(1)} - 1 + 3 \stackrel{?}{=} 1$ | $\sqrt{5\left(\begin{array}{c} 10 \end{array}\right) - 1} + 3 \stackrel{?}{=} 10$ |
| $\sqrt{4} + 3 \stackrel{?}{=} 1$        | $\sqrt{49} + 3 \stackrel{?}{=} 10$                                                |
| <b>2</b> $+ 3 \stackrel{?}{=} 1$        | <b>7</b> + 3 $\stackrel{?}{=}$ 10                                                 |
| $5 \neq 1$ false                        | <b>10</b> = 10 ✓                                                                  |

**15.** The solution **1** is extraneous.

16. Multiple Choice What can cause an extraneous solution?

- A raising each side of the equation to an odd power
- B raising each side of the equation to an even power
- C adding the same number to each side of an equation
- D dividing each side of an equation by the same number
- 17. When should you check for extraneous solutions? Explain.

You should check for an extraneous solution any time you raise

both sides of an equation to an even power.

Problem 5 Solving an Equation With Two Radicals

172

**Got lt?** What is the solution of  $\sqrt{5x + 4} - \sqrt{x} = 4$ ?

**18.** The equation has been solved below. Write the letter of the reason that justifies each step. Use the reasons in the box.

| $\sqrt{5x+4} - \sqrt{x} = 4$  | F |  |
|-------------------------------|---|--|
| $\sqrt{5x+4} = \sqrt{x} + 4$  | Α |  |
| $5x + 4 = (\sqrt{x} + 4)^2$   | В |  |
| $5x + 4 = x + 8\sqrt{x} + 16$ | Е |  |
| $4x - 12 = 8\sqrt{x}$         | Α |  |
| $x - 3 = 2\sqrt{x}$           | С |  |
| $(x-3)^2 = 4x$                | В |  |
| $x^2 - 6x + 9 = 4x$           | Е |  |
| $x^2 - 10x + 9 = 0$           | Α |  |
| (x - 9)(x + 1)                | D |  |
| x = 9  or  x = -1             | G |  |

- A Addition Property of Equality
- B Square each side.
- C Division Property of Equality
- D Factor
- E Simplify.
- F Original equation
- G Zero Product Property

**19.** Only the solution x = -1/x = 9 satisfies the original equation.

# Lesson Check • Do you UNDERSTAND?

**Vocabulary** Which value, 12 or 3, is an extraneous solution of  $x - 6 = \sqrt{3x}$ ?

- **20.** The solution x = 12 satisfies / does not satisfy the original equation.
- **21.** The solution x = 3 satisfies / does not satisfy the original equation.


**22.** The solution  $x = \frac{12}{x} = 3$  is an extraneous solution of  $x - 6 = \sqrt{3x}$ .

# Math Success

Check off the vocabulary words that you understand.

- radical equation
- square root equation

Rate how well you can solve square root and other radical equations.



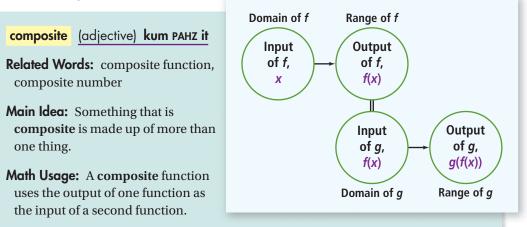
# **Function** Operations

# Vocabulary

### Review

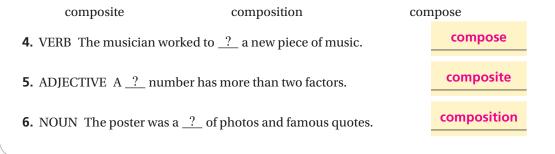
6-6

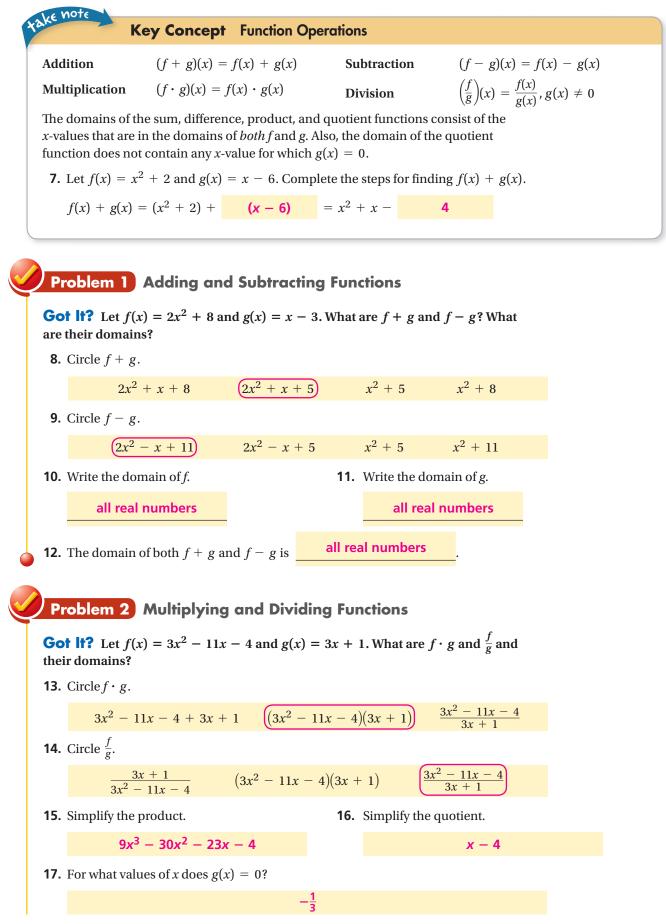
- **1.** In *function notation*, gx / g(x) / x(g) is read g of x.
- 2. Circle the equation that shows a *function rule*.

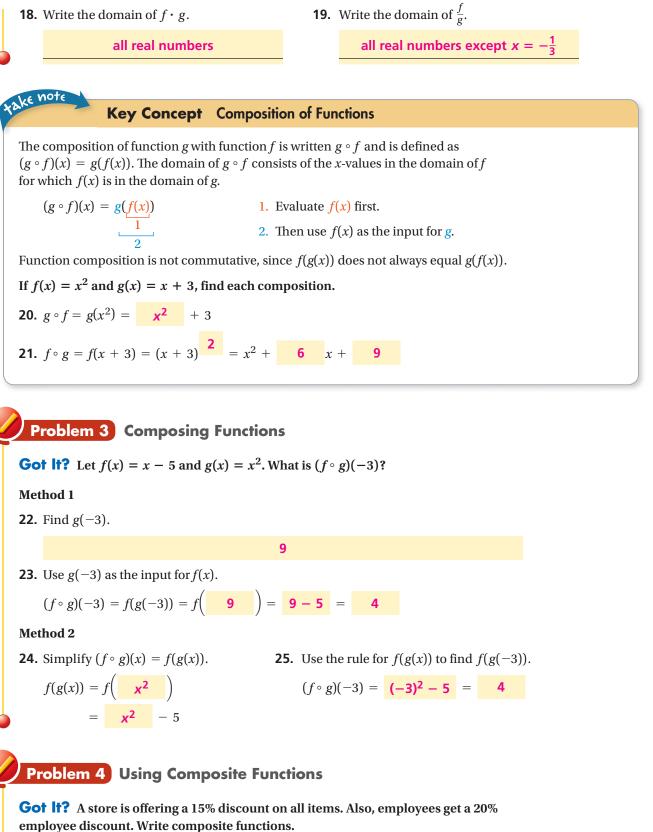

$$x + 17y = -4.7$$
  $f(x) = 14x - 0.3$   $15z(13t)$ 

**3.** The function rule f(t) = 1.83t represents the cost of a number of tons of wheat *t*.

The number of tons of wheat is the input / output.


The output is the cost of the wheat / number of tons of wheat.

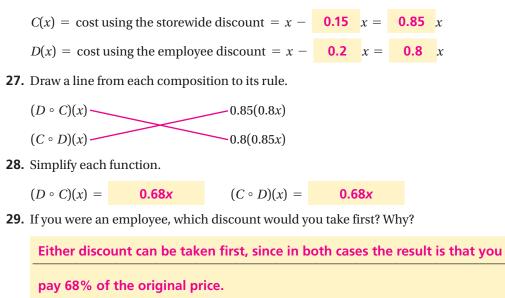

### Vocabulary Builder




### • Use Your Vocabulary

Complete each sentence with the correct form of the word *composite*.








Model taking the 15% discount and then the 20% discount.

Model taking the 20% discount and then the 15% discount.

**26.** Let *x* be the price of an item. Write functions to model each discount.



# Lesson Check • Do you UNDERSTAND?

**Open-Ended** Find two functions *f* and *g* such that f(g(x)) = x for all real numbers *x*.

- **30.** If g(x) = x + 3, write a function f(x) to give f(g(x)) = x.
- **31.** If g(x) = 2x, write a function f(x) to give f(g(x)) = x.

f(x) = x - 3

 $f(\mathbf{x}) = \frac{\mathbf{x}}{2}$ 

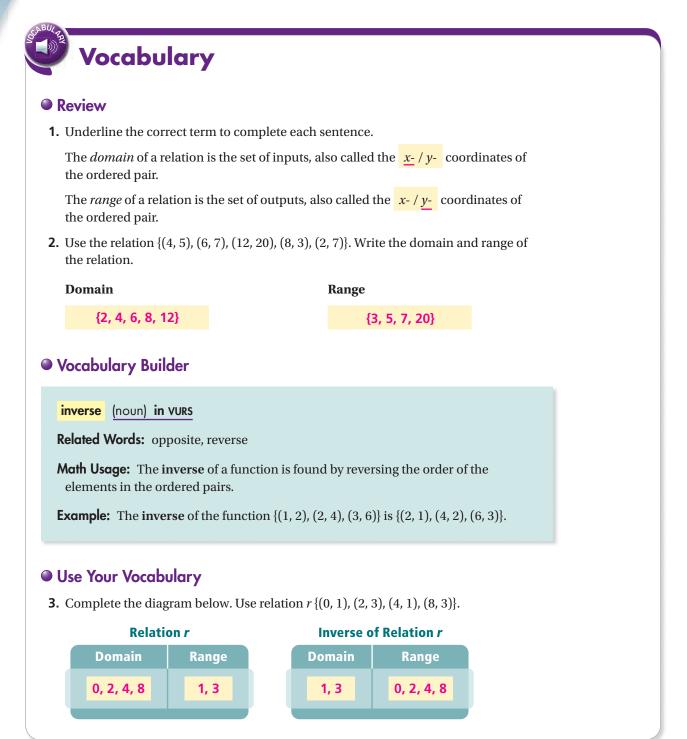
**32.** Write a function g(x). Then, find f(x) such that f(g(x)) = x.

Answers will vary. The functions should be inverses of one another.

# Math Success

Check off the vocabulary words that you understand.

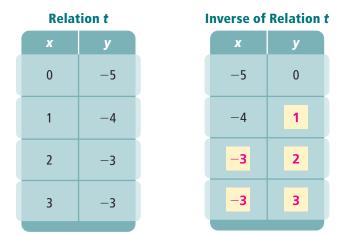
composite function function


function operations

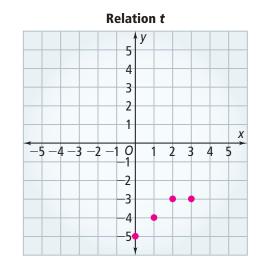
Rate how well you can *find the composition of two functions*.

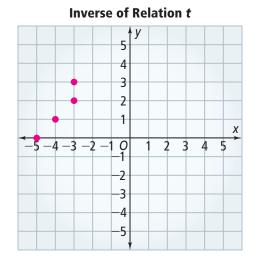
| Need to review | 0<br>⊢ | <br>2 | <br>4 | <br>6 | <br>8 | <br>10 | • | Now I<br>get it! |
|----------------|--------|-------|-------|-------|-------|--------|---|------------------|
|                |        |       |       |       |       |        |   |                  |




# Inverse Relations and Functions



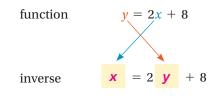

# Problem 1 Finding the Inverse of a Relation


**Got lt?** What are the graphs of *t* and its inverse?

**4.** Complete the table of values for the inverse of relation *t*.



**5.** Plot the points from the Relation *t* table and from the Inverse of Relation *t* table.





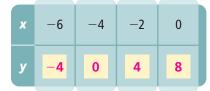

### Problem 2 Finding an Equation for the Inverse

### **Got lt?** What is the inverse of y = 2x + 8?

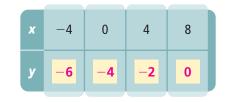
**6.** Switch the *x* and *y* values in the function.

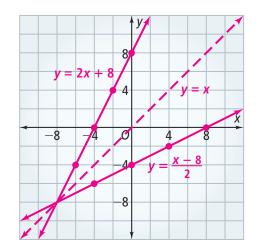


#### **7.** Solve the inverse equation for *y*.


$$x = 2y + 8$$
  
 $x - 8 = 2y$   $\frac{x - 8}{2} = y$ 

### Problem 3 Graphing a Relation and Its Inverse


#### **Got lt?** What are the graphs of y = 2x + 8 and its inverse?


**8.** Complete the table for y = 2x + 8.

**9.** Complete the table for the inverse of y = 2x + 8.



- **10.** Plot and draw a line through the points from the y = 2x + 8 table.
- **11.** On the same grid, plot and draw a line through the points from the inverse of y = 2x + 8 table.
- **12.** Draw a dashed line to show the line that reflects the equation y = 2x + 8 to its inverse.





### Problem 5 Finding the Inverse of a Formula

**Got It?** The function  $d = \frac{v^2}{19.6}$  relates the distance *d*, in meters, that an object has fallen to its velocity *v*, in meters per second. Find the inverse of this function. What is the velocity of the cliff diver in meters per second as he enters the water?

**13.** Solve the function for *v*.

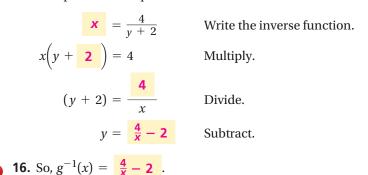
$$d = \frac{v^2}{19.6}$$
$$19.6d = v^2 \rightarrow \sqrt{19.6d} = v$$



dredth meter

**14.** Let d = 24 meters. Write the value of the velocity v, to the nearest hundredth meter per second, of the diver as he enters the water.

21.69


### Key Concept Composition of Inverse Functions

If *f* and  $f^{-1}$  are inverse functions, then  $(f^{-1} \circ f)(x) = x$  and  $(f \circ f^{-1})(x) = x$  for *x* in the domains of *f* and  $f^{-1}$ , respectively.

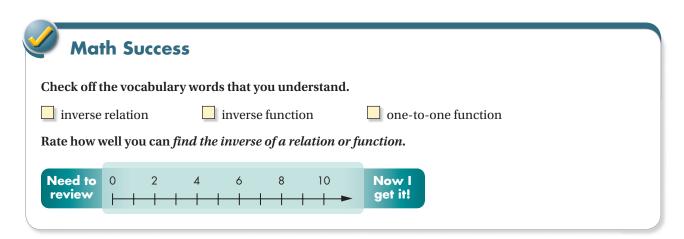
### Problem 6 Composing Inverse Functions

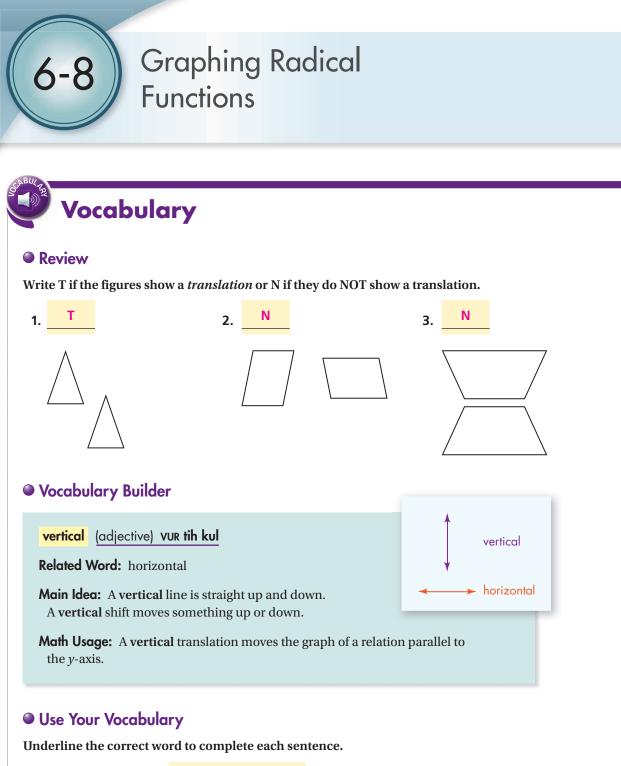
**Got lt?** Let  $g(x) = \frac{4}{x+2}$ . What is  $g^{-1}(x)$ ? **15.** Complete each step.

ke not



# Lesson Check • Do you UNDERSTAND?


**Reasoning** A function consists of the pairs (2, 3), (x, 4), and (5, 6). What values, if any, may *x* not assume?


**17.** Each *x*-value in the domain of a function corresponds to

exactly one *y*-value / many *y*-values in the range.

**18.** What values, if any, may *x* not assume?

Answers may vary. Sample: x cannot equal 2 or 5.





- **4.** A helicopter takes off vertically / horizontally.
- 5. A package on a flat conveyor belt moves vertically / horizontally.
- 6. Stepping side-to-side is a vertical / horizontal movement.

Copyright @ by Pearson Education, Inc. or its affiliates. All Rights Reserved.

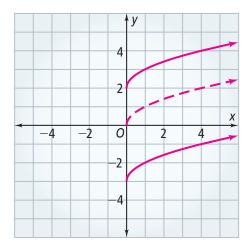
Key Concepts Families of Radical Functions

|                                                           | Square Root            | Radical                 |
|-----------------------------------------------------------|------------------------|-------------------------|
| Parent function                                           | $y = \sqrt{x}$         | $y = \sqrt[n]{x}$       |
| Reflection in <i>x</i> -axis                              | $y = -\sqrt{x}$        | $y = -\sqrt[n]{x}$      |
| Stretch ( $a > 1$ ), shrink ( $0 < a < 1$ ) by factor $a$ | $y = a\sqrt{x}$        | $y = a\sqrt[n]{x}$      |
| Translation: horizontal by $h$ , vertical by $k$          | $y = \sqrt{x - h} + k$ | $y = \sqrt[n]{x-h} + k$ |

## Problem 1 Translating a Square Root Function Vertically

**Got If?** What are the graphs of  $y = \sqrt{x} + 2$  and  $y = \sqrt{x} - 3$ ?

**7.** The graph of  $y = \sqrt{x} + 2$  is a horizontal / vertical translation of  $y = \sqrt{x}$ 


up / down / left / right 2 units.

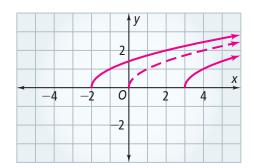
ke not

**8.** What does the translation  $y = \sqrt{x} - 3$  look like? **Answers may vary. Sample:** 

It is a vertical translation of  $y = \sqrt{x}$ . It is shifted down 3 units.

**9.** Draw the graph of the function  $y = \sqrt{x}$ . Then, use that graph to draw the graphs of  $y = \sqrt{x} + 2$  and  $y = \sqrt{x} - 3$  on the same grid.

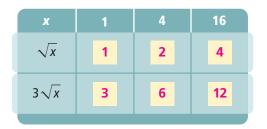



# Problem 2 Translating a Square Root Function Horizontally

**Got If?** What are the graphs of  $y = \sqrt{x-3}$  and  $y = \sqrt{x+2}$ ?

- **10.** The graph of  $y = \sqrt{x-3}$  is a <u>horizontal</u> / vertical translation of  $y = \sqrt{x}$ up / down / left / right 3 units.
- **11.** What does the translation  $y = \sqrt{x+2}$  look like?

It is a horizontal translation of  $y = \sqrt{x}$ . It is shifted 2 units left.


**12.** Draw the graph of the function  $y = \sqrt{x}$ . Then, use that graph to draw the graphs of  $y = \sqrt{x-3}$  and  $y = \sqrt{x+2}$  on the same grid.



### Problem 3 Graphing a Square Root Function

**Got lt?** What is the graph of  $y = 3\sqrt{x+2} - 4$ ?

**13.** Complete the table.



**14.** Multiplying the *y*-coordinates of

 $y = \sqrt{x}$  by 3 shrinks / stretches the graph.

**15.** Explain how the graph of  $y = 3\sqrt{x+2} - 4$  relates to the graph of  $y = \sqrt{x}$ .

Answers may vary. Sample: It is a

translation of  $y = \sqrt{x}$  that is 2 units

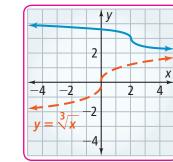
left and 4 units down, and stretched by a

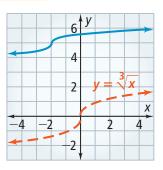
factor of 3.

# Problem 5 Graphing a Cube Root Function

**Got lt?** What is the graph of  $y = 3 - \frac{1}{2}\sqrt[3]{x-2}$ ?

**16.** Write  $y = 3 - \frac{1}{2}\sqrt[3]{x-2}$  in standard form.


 $y = -\frac{1}{2}\sqrt[3]{x-2} + 3$ 


Underline the correct numbers or words to complete each sentence.

**17.** The shift is 2/3 units left / right and 2/3 units up / down.

**18.** There is a <u>shrink</u> / stretch by a factor of  $\frac{1}{2}$  / 2 and the result <u>is</u> / is not reflected.

**19.** Circle the graph of  $y = 3 - \frac{1}{2}\sqrt[3]{x-2}$ .







## Problem 6 Rewriting a Radical Function

**Got lt?** How can you rewrite  $y = \sqrt[3]{8x + 32} - 2$  so you can graph it using transformations? Describe the graph.

**20.** Factor out the GCF of the radicand.

8x + 32 = 8(x + 4)

**21.** Complete the equation.

 $\sqrt[3]{8x+32} - 2 = 2 \sqrt[3]{x+4} - 2$ 

**22.** Underline the correct word to complete each phrase.

translated left / right by 4 units

stretched / shrunk by a factor of 2

translated up / down by 2 units

# Lesson Check • Do you UNDERSTAND?

**Error Analysis** Your friend states that the graph of  $g(x) = \sqrt{-x - 1}$  is a reflection of the graph of  $f(x) = -\sqrt{x + 1}$  across the *x*-axis. Describe your friend's error.

- **23.** The graph of the function -f(x) / f(-x) is a reflection of f(x) over the *x*-axis.
- **24.** Write the expression that is equal to -f(x).

 $\sqrt{x+1}$ 

**25.** Explain the error your friend made.

Answers may vary. Sample: The student multiplied the radicand

by -1 instead of multiplying the entire radical by -1.

# **Math Success**

Check off the vocabulary words that you understand.

radical function

square root function

Rate how well you can graph square root functions.

| Need to | 0        |   | 2 |   | 4 |   | 6 |   | 8 | 10   |   | Now I   |
|---------|----------|---|---|---|---|---|---|---|---|------|---|---------|
| review  | $\vdash$ | + |   | + |   | + |   | + |   | <br> | • | get it! |