Name: \qquad
Serafino - Geometry

Per: \qquad Date: \qquad

$\mathrm{R}-1$	
Quest Review 1	

1. Use the figure to the right.
a. Which of the following can be used to correctly name the angle to the right? Circle the letter of all options that are correct.
(A) $\angle \mathrm{DBC}$
(C) $\angle A B C$
(E) $\angle B$
(G) $\angle \mathrm{BD}$
(B) $\angle 1$
(D) $\angle \mathrm{ADBC}$
(F) $\angle C D A$
(H) $\angle A B$

b. Circle all the pairs of opposite rays in the figure.
A. AD and DA
C. BC and BD
B. DA and DB
D. There are no opposite rays in the figure.
c. In the figure, draw line CD.
2. Use the triangle to the right:
a. Mark up the figure with the following information:

$$
\mathrm{m} \angle \mathrm{ADB}=90^{\circ}, \mathrm{AD}=\mathrm{BD}, \angle \mathrm{DAB} \cong \angle \mathrm{DBA}
$$

b. Name a pair of adjacent angles that are not a linear pair.
\qquad \& \qquad
\qquad \& \qquad
3. Label the intersection of $A B$ and $C D$ as point E. Is $\angle A E D$ is acute or obtuse or right? Prove it algebraically.

4. Triangle $L U V$ has vertices at $L(-3 .-3), U(3,5), V(1,-6)$.
a. Length of $\mathrm{LU}=$ \qquad

Midpoint of LU \qquad
b. Length of $U V=$ \qquad Midpoint of UV \qquad
c. Length of $\mathrm{LV}=$ \qquad Midpoint of LV \qquad
d. If U is the midpoint of LUK, what are the coordinates of K ? \qquad
5. Draw, name and notate the figure:
a. The ray with initial point B that contains points A and C
b. The line RP bisects segment ST.
c. On a line segment, C is the midpoint of $A B$, and D is the midpoint of $C B$.
d. Angle POW and angle COW are a linear pair.
6. Draw segment $A B$ with midpoint M. Find the length of $M B$ if $A M=3 x+7$ and $A B=14 x-2$.
7. Using the figure, name the following:
a. Linear Pairs:
a) $\angle \mathrm{FGA}$ and \angle \qquad
b) $\angle \mathrm{EGD}$ and \angle \qquad
b. Adjacent angles that are not a linear pair.

$$
\angle \mathrm{FGE} \text { and } \angle
$$

\qquad
c. Vertical angles:
a) $\angle \mathrm{BGA}$ and \angle \qquad
b) $\angle \mathrm{AGF}$ and \angle \qquad
d. Three collinear points:

Point D, Point G, and Point \qquad

e. Three noncollinear points:

Point C, Point G, and Point \qquad
8. In the figure below, ray $B D$ bisects $\angle A B C$. Find $m \angle A B C$.

9. In the figure below, $\mathrm{m} \angle \mathrm{ABC}=50^{\circ}$. Find the measure of each angle.

10. In the figure to the right, find the value of x and y.

$$
\xrightarrow[(6 y-3)^{\circ}]{\stackrel{(4 x+10)^{\circ}}{(4 y+24)^{\circ}}}
$$

11. In the figure to the right, find the value of x and y.

12. Two angles are supplementary. One angle is 17.63° less than the other. Find the two angles.
13. Solve the following equation: $2(4 x-5)-3(2 x-4)=2 x+2$
14. On segment $A D$, find the coordinates of the midpoint, M, if $A(2,-6)$ and $D(4,9)$
15. On segment $W X, W(2,5)$ and $M(-4,12)$ Find the coordinates of endpoint X.

Bonus: In the figure to the right, QT bisects $\angle \mathrm{SQR}$, and ray QS bisects $\angle \mathrm{PQR}$.
(A) linear pair
(C) adjacent
(E) complementary
(G) none
(B) vertical
(D) congruent
(F) supplementary

Use the codes above to fill in all that apply to each angle pair:
a. $\angle \mathrm{SQT}$ and $\angle \mathrm{RQT}$ are: (A) (B) (C) (D) (F) (G)
b. $\angle \mathrm{PQS}$ and $\angle \mathrm{RQT}$ are: (A) (B) (C) (E) (F) (G)
c. $\angle \mathrm{PQS}$ and $\angle \mathrm{SQR}$ are: (A) (B) (C) (E) (F) (G)
d. If $m \angle P Q T=3.2 x+51.6$, find the value of x

