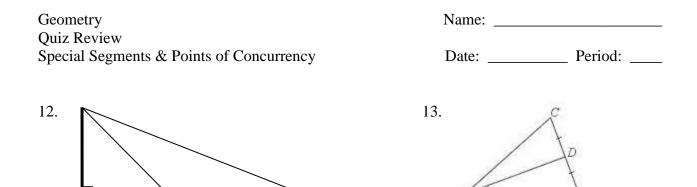
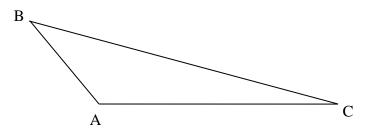
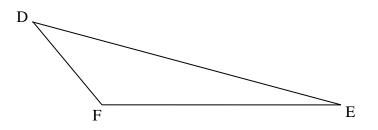
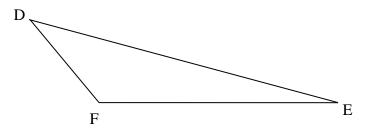

Geometry Quiz Review Special Segments & Points of Concurrency		Period:
For #1-7, fill in the correct answer.		
1. The point equidistant from the vertices of a triangle is t	he	<u> </u>
2. The distance from the vertex to the is two	thirds the length c	of the median.
3. The point of concurrency for the medians is called the _		
4. The point of concurrency for the perpendicular bisector	rs is called the	·
5. The point of concurrency for the lines containing the al	titudes is called th	e
6. The point of concurrency for the angle bisectors is calle	ed the	
7. The point equidistant from the sides of the triangle is the	ie	


For #8-13, identify the type of segment in each triangle.

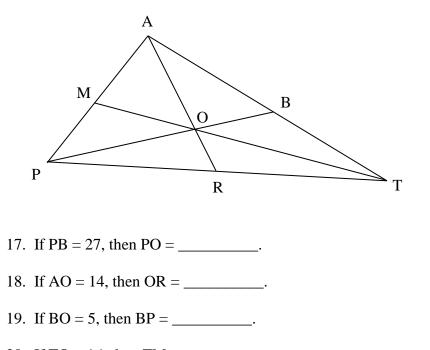



For #14 & 16, use a ruler to draw the indicated segments of the triangle. You must be accurate and show all correct markings.

B


14. Perpendicular bisector of \overline{BC} .

15. Altitude from D to \overline{EF} .

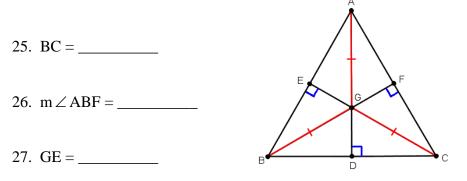


16. Median from F to \overline{DE} .

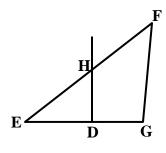
Geometry	Name:	
Quiz Review		
Special Segments & Points of Concurrency	Date:	Period:

Use the following diagram for #17-21. T is the centroid of \triangle PAT.

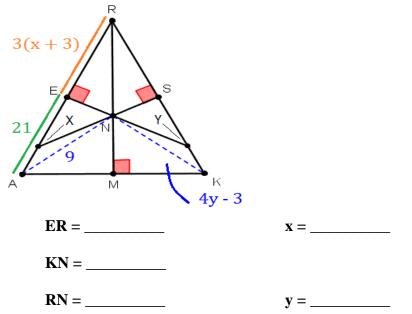
- 20. If TO = 16, then TM =_____.
- 21. If RO = 3, then OA = _____.


Use the following diagram for #22 - 24. Point D is the circumcenter of \triangle ABC. DC = 11, DG = 6

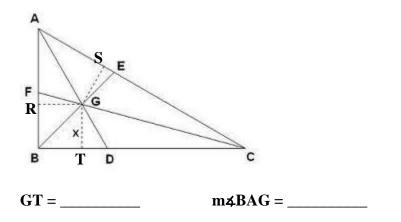
С


22. GC =_____ 23. AC =_____ 24. BD =_____ G

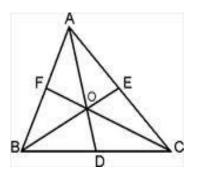
Geometry	Name:	
Quiz Review		
Special Segments & Points of Concurrency	Date:	Period:


Use the following diagram for #25 - 27. Point G is the incenter of \triangle ABC. DC = 4, GF = 5, m \angle ABC = 50°

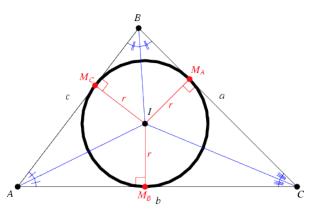
28. In $\triangle EFG$, \overline{DH} is a perpendicular bisector of \overline{EG} with D on \overline{EG} . If ED = 7x + 10, GD = 9x - 2, and $m \measuredangle HDG = (4y + 2)^0$. Find the value of x and y. Show work.



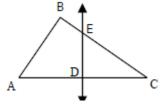
29. N is the circumcenter of $\triangle ARK$.



Geometry	Name:	
Quiz Review		
Special Segments & Points of Concurrency	Date:	Period:

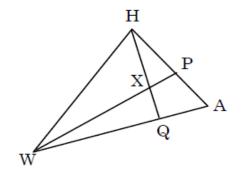

30. G is the incenter of $\triangle ABC$. $\overline{GR} \perp \overline{AB}$, $\overline{GT} \perp \overline{BC}$, $\overline{GS} \perp \overline{AC}$; GR = 7, and m \neq BAC = 60°.

31. O is the centroid of $\triangle ABC$. Each question is unrelated to the previous question.


- a. If CO = 6, then OF = _____.
- b. If AD = 12, then AO = _____ and OD = _____.
- c. If BF = 4, then AF = _____.
- d. If OE = 5, then BO = _____.
- 32. I is the incenter of $\triangle ABC$. Let $m \not ABC = (6x 4)^0$ and $m \not ABI = (2x + 10)^0$. Find x and the $m \not ACBI$.

Name:	

Geometry Quiz Review Special Segments & Points of Concurrency



In $\triangle ABC$, \overline{DE} is a perpendicular bisector of \overline{AC} with D on \overline{AC} .

33. If $m \neq EDC = (2y + 12)^{0}$. Find the value of y.

34. If AD = 2x + 6 and DC = 4x - 42. Find the value of x.

35. \overline{WP} is a median and an angle bisector of $\triangle HWA$.

 $m \neq HWP = (2x - 3)^0$ and $m \neq HWA = (6x - 26)^0$. Find x.