Name: \qquad
\qquad Period: \qquad

For \#1-7, fill in the correct answer.

1. The point equidistant from the vertices of a triangle is the \qquad .
2. The distance from the vertex to the \qquad is two thirds the length of the median.
3. The point of concurrency for the medians is called the \qquad .
4. The point of concurrency for the perpendicular bisectors is called the \qquad .
5. The point of concurrency for the lines containing the altitudes is called the \qquad _.
6. The point of concurrency for the angle bisectors is called the \qquad .
7. The point equidistant from the sides of the triangle is the \qquad -.

For \#8-13, identify the type of segment in each triangle.
8.

9.

10.

11.

Geometry
Quiz Review
Special Segments \& Points of Concurrency

Name: \qquad
Date: \qquad Period: \qquad
13.

For \#14 \& 16, use a ruler to draw the indicated segments of the triangle. You must be accurate and show all correct markings.
14. Perpendicular bisector of $\overline{B C}$.

15. Altitude from D to $\overline{E F}$.

16. Median from F to $\overline{D E}$.

\qquad
\qquad Period: \qquad
Use the following diagram for \#17-21. T is the centroid of \triangle PAT.

17. If $\mathrm{PB}=27$, then $\mathrm{PO}=$ \qquad .
18. If $\mathrm{AO}=14$, then $\mathrm{OR}=$ \qquad .
19. If $\mathrm{BO}=5$, then $\mathrm{BP}=$ \qquad .
20. If $\mathrm{TO}=16$, then $\mathrm{TM}=$ \qquad .
21. If $\mathrm{RO}=3$, then $\mathrm{OA}=$ \qquad .

Use the following diagram for \#22-24. Point D is the circumcenter of $\triangle \mathrm{ABC}$.
$D C=11, D G=6$
22. $\mathrm{GC}=$ \qquad
23. $\mathrm{AC}=$ \qquad
24. $\mathrm{BD}=$ \qquad

\qquad
\qquad Period: \qquad
Use the following diagram for \#25-27. Point G is the incenter of $\triangle \mathrm{ABC}$.
$\mathrm{DC}=\mathbf{4}, \mathrm{GF}=5, \mathrm{~m} \angle \mathrm{ABC}=50^{\circ}$
25. $\mathrm{BC}=$ \qquad
26. $\mathrm{m} \angle \mathrm{ABF}=$ \qquad
27. $\mathrm{GE}=$ \qquad

28. In $\triangle E F G, \overline{D H}$ is a perpendicular bisector of $\overline{E G}$ with D on $\overline{E G}$. If $E D=7 x+10, G D=9 x-$ 2 , and $m \Varangle$ HDG $=(4 y+2)^{0}$. Find the value of x and y. Show work.

29. \mathbf{N} is the circumcenter of $\triangle \mathrm{ARK}$.

$\mathbf{E R}=$ \qquad

$$
\mathbf{x}=
$$

\qquad
$\mathbf{K N}=$ \qquad
$\mathbf{R N}=$ \qquad

$$
\mathbf{y}=
$$

\qquad
\qquad Period: \qquad
30. G is the incenter of $\triangle \mathrm{ABC} . \overline{\boldsymbol{G R}} \perp \overline{A B}, \overline{\boldsymbol{G T}} \perp \overline{\boldsymbol{B C}}, \overline{G S} \perp \overline{A C} ; \mathbf{G R}=7$, and \mathbf{m} BAC $=60^{\mathbf{0}}$.

GT = \qquad $m \Varangle B A G=$ \qquad
31. O is the centroid of $\triangle \mathrm{ABC}$. Each question is unrelated to the previous question.

a. If $\mathrm{CO}=6$, then $\mathrm{OF}=$ \qquad .
b. If $\mathrm{AD}=12$, then $\mathrm{AO}=$ \qquad and $\mathrm{OD}=$ \qquad .
c. If $\mathrm{BF}=4$, then $\mathrm{AF}=$ \qquad ..
d. If $\mathrm{OE}=5$, then $\mathrm{BO}=$ \qquad .
32. I is the incenter of $\triangle A B C$. Let $m \Varangle A B C=(6 x-4)^{0}$ and $m \Varangle A B I=(2 x+10)^{0}$. Find x and the $m \nsucceq C B I$.

Geometry
Quiz Review
Special Segments \& Points of Concurrency

In $\triangle \mathrm{ABC}, \overline{D E}$ is a perpendicular bisector of $\overline{A C}$ with D on $\overline{A C}$.
33. If $\mathbf{m} \Varangle E D C=(2 y+12)^{\mathbf{0}}$. Find the value of \mathbf{y}.
34. If $A D=2 x+6$ and $D C=4 x-42$. Find the value of x.

35. $\overline{\boldsymbol{W P}}$ is a median and an angle bisector of $\triangle H W A$. $m \Varangle H W P=(2 x-3)^{0}$ and $m \Varangle H W A=(6 x-26)^{0}$. Find x.

